
Empty Vehicle Redistribution

for

Personal Rapid Transit

John D. Lees-Miller

A dissertation submitted to the University of Bristol in accordance with the

requirements for award of the degree of PhD in the Faculty of Engineering.

July, 2011

24415 words

2

Abstract

A Personal Rapid Transit (PRT) system uses compact, computer-guided ve-
hicles running on dedicated guideways to carry individuals or small groups
directly between pairs of stations. PRT vehicles operate on demand, much
like conventional taxis. The empty vehicle redistribution (EVR) problem is
to decide when and where to move empty PRT vehicles. These decisions are
made in real time by an EVR algorithm. A reactive EVR algorithm moves
empty vehicles only in response to known requests; in contrast, a proactive
EVR algorithm moves empty vehicles in anticipation of future requests. In
this thesis, two new proactive EVR algorithms, here called Sampling and
Voting (SV) and Dynamic Transportation Problem (DTP), are developed
and evaluated. It is shown that they reduce passenger waiting times sub-
stantially below those obtained by reactive EVR algorithms, with a modest
increase in empty vehicle travel, and that they usually outperform similar
algorithms in the literature. Several new theoretical tools are also devel-
oped, including a benchmark for maximum achievable throughput and two
benchmarks for minimum achievable passenger waiting times. These provide
an absolute measure of the performance of EVR algorithms, and they quan-
tify the potential for further improvement. Finally, preliminary work on a
Markov Decision Process formulation of the EVR problem is presented and
used to obtain provably optimal policies for small systems.

3

4

Dedication

For my friends and family.

5

6

Acknowledgements

Prof. R. E. Wilson (supervisor)

Prof. M. G. H. Bell (external examiner)
Dr R. Clifford (internal examiner)

Dr P. H. Bly
Prof. C. J. Budd
Prof. A. R. Champneys
Dr N. Davenport
Dr J. C. Hammersley
Dr R. J. Gibbens
Prof. F. P. Kelly
N. Koren
Prof. M. V. Lowson
Dr J. A. Padget
Dr A. J. Peters

Funding was provided by an Overseas Research Scholarship from the Uni-
versity of Bristol; the CityMobil Sixth Framework Programme for DG Re-
search Thematic Priority 1.6, Sustainable Development, Global Change and
Ecosystems, Integrated Project, Contract Number TIP5-CT-2006-031315;
and REW’s EPSRC Advanced Fellowship EP/E055567/1.

7

8

Author’s Declaration

I declare that the work in this dissertation was carried out in
accordance with the requirements of the University’s Regulations
and Code of Practice for Research Degree Programmes and that
it has not been submitted for any other academic award. Ex-
cept where indicated by specific reference in the text, the work
is the candidate’s own work. Work done in collaboration with,
or with the assistance of, others, is indicated as such. Any views
expressed in the dissertation are those of the author.

SIGNED: .

DATE: .

9

10

Contents

1 Introduction 17
1.1 Personal Rapid Transit Background 19

1.1.1 Networks . 20
1.1.2 Stations . 24
1.1.3 Vehicles . 26
1.1.4 Control Systems . 28
1.1.5 History . 29
1.1.6 Capacity . 29

1.2 Modelling Assumptions . 30
1.3 Thesis Outline . 32

2 A Benchmark for Throughput 35
2.1 The Fluid Limit and the Capacity Region 36
2.2 Reactive EVR Algorithms . 44

2.2.1 Bell and Wong Nearest Neighbours (BWNN) 45
2.2.2 Longest-Waiting Passenger First (LWPF) 46
2.2.3 Discussion . 48

2.3 Training and Testing Data . 50
2.3.1 Training Scenarios . 50
2.3.2 Testing Scenarios . 51

2.4 Evaluation of Throughput . 55
2.4.1 Results for BWNN and LWPF 55
2.4.2 Results on the Test Scenarios 58
2.4.3 The Effects of Line Congestion 58

3 Benchmarks for Passenger Waiting Time 63
3.1 An M/G/s Queueing Model 64

3.1.1 Random Walk Model for Empty Vehicle Trips 65
3.1.2 The Service Time Distribution 67
3.1.3 The Queueing Model 69
3.1.4 Results . 70

11

3.2 The Static EVR Problem . 71
3.2.1 The Vehicle Passenger Graph 74
3.2.2 Arc Flow Formulation 76
3.2.3 Related Problems . 77
3.2.4 Exact Solution as a Mixed Integer LP 82
3.2.5 Approximate Solution: Static Nearest Neighbours (SNN) 84

3.3 Discussion . 85

4 New Proactive EVR Algorithms 87
4.1 Sampling and Voting (SV) . 89
4.2 Dynamic Transportation Problem (DTP) 91

4.2.1 Setting Targets with Simulated Annealing 92
4.2.2 Setting Targets with the Cross-Entropy Method 94

4.3 Results . 95
4.3.1 Results on the Test Scenarios 101
4.3.2 Effect of Sequence Length and Number on SV 101

4.4 Discussion . 104

5 Future Work and Conclusions 109
5.1 A Markov Decision Process Formulation 109

5.1.1 An MDP Model . 110
5.1.2 Solution Methods . 114
5.1.3 Results . 115
5.1.4 Discussion . 117

5.2 Conclusions . 124

References 127

12

List of Figures

1.1 ‘Heathrow Pod’ PRT vehicle. 18
1.2 Photograph of an elevated PRT guideway section at Heathrow. 21
1.3 Rendering of a PRT station integrated into a building. 22
1.4 The Corby and Grid PRT networks. 23
1.5 Schematic of an off-line PRT station. 25
1.6 Passengers at berths during a capacity trial at Heathrow. . . . 27

2.1 Empty vehicle flows for the Corby case study. 39
2.2 Capacity regions for small ring and star networks. 41
2.3 Illustration of the BWNN algorithm. 47
2.4 Networks for the testing scenarios. 53
2.5 Desire line diagrams for the testing scenarios. 54
2.6 Simulation results for the BWNN and LWPF EVR algorithms. 56
2.7 Throughput of BWNN on the test scenarios. 59
2.8 Effect of line congestion on mean queue length for varying

minimum headway. 61

3.1 Mean waiting times for the M/G/s model on a 4-station star. . 72
3.2 Comparison of M/G/s to SV on a 4-station star. 73
3.3 An example of a vehicle-request graph. 75
3.4 Baseline results for the Corby and Grid scenarios. 86

4.1 Results for proactive EVR algorithms on the Corby and Grid
scenarios. 99

4.2 Simulated annealing results for the Corby and Grid scenarios. 100
4.3 Mean passenger waiting times for proactive EVR algorithms

on the test scenarios. 102
4.4 Empty vehicle use for proactive EVR algorithms on the test

scenarios. 103
4.5 Effect of the number of sequences parameter (nE) on SV. . . . 105
4.6 Effect of the sequence length parameter (nR) on SV. 106

13

5.1 Time discretisation for the MDP model. 112
5.2 Optimal policy for a two station ring with one vehicle (qmax = 1).118
5.3 Optimal policy for a two station ring with one vehicle (qmax =

10). 119
5.4 Optimal policy for a two station ring with two vehicles. 121

14

List of Tables

2.1 Total flows for the Grid scenario gravity model. 52
2.2 Basic data for the testing scenarios. 52

4.1 Search parameters for DTP evaluation on the training scenarios. 98
4.2 Parameters for evaluation on the test scenarios. 101

5.1 Solution to the problem (5.2) with discount factor γ = 0.99. . 116
5.2 State space size for two- and three-station rings. 120
5.3 Selected states and optimal actions near the boundary. 122

15

16

Chapter 1

Introduction

Personal Rapid Transit (PRT) is an emerging urban transport mode. It will

use small, computer-guided vehicles to carry individuals and small groups

between pairs of stations on a dedicated network of guideways. The vehicles

will operate on-demand and provide direct service from origin station to des-

tination station. The most similar existing mode is the street-hail (hackney)

taxi; the main differences are that PRT vehicles are driven by computers,

and that demand is concentrated at special-purpose PRT stations.

The world’s first PRT system opened in Masdar City in November, 2010

with ten vehicles and two stations for passenger use, and a further three ve-

hicles and three stations for freight (2getthere, 2011a). Another PRT system

with 21 vehicles (Figure 1.1) and three stations is in the final stages of testing

at London’s Heathrow Airport (ULTra PRT, 2010). Several larger systems

have been proposed for development in the near future (Bly and Teychenne,

2005).

This thesis is concerned with the management of empty vehicles in PRT

systems. The need for empty vehicle trips arises because passenger demand

between stations is often unbalanced, either in the short term or the long

term. The Empty Vehicle Redistribution (EVR) problem is to decide which

empty vehicles to move, and where to move them. These decisions must be

made in real time as the system is operating and as new passengers’ requests

for service are received. The two main objectives are to avoid unnecessary

17

Figure 1.1: Photograph of a PRT vehicle and at-grade station at London
Heathrow Airport. PRT vehicles, stations and infrastructure are smaller than
typical Automated People Mover and urban rail systems. Vehicle length,
width and height are 3.7m, 1.4m and 1.8m, respectively. Photo courtesy of
ULTra PRT Ltd.

18

empty vehicle running, which increases operating costs, system congestion

and energy use, and to keep passenger waiting times low, which makes the

system more attractive to passengers.

To provide low waiting times, the system must move empty vehicles

proactively, in anticipation of future demand. It is assumed that, like in

the Heathrow and Masdar applications, passengers request immediate travel

from their origin station to their chosen destination station (that is, they do

not call ahead). A passenger’s waiting time is the delay between when the

system receives his request and when he is picked up by a vehicle. If the

assigned vehicle is not already idle at, or going to, the passenger’s origin sta-

tion, an empty trip is required, and the passenger’s waiting time includes this

empty trip time. Proactive empty vehicle movement can reduce or eliminate

passenger waiting time due to empty trips by starting empty trips earlier,

where possible, in anticipation of future requests.

The main outputs of this thesis are two new EVR algorithms that move

empty vehicles proactively. In most cases, they give lower mean waiting

times and require less empty vehicle running than other algorithms in the

literature. These algorithms are described and evaluated in Chapter 4. The

rest of the thesis develops the underlying models and theory, as outlined in

Section 1.3. First, Section 1.1 introduces PRT for those who are new to

the subject, and Section 1.2 describes the basic modelling assumptions and

notation that we will use in this thesis.

1.1 Personal Rapid Transit Background

This section introduces the main ideas of PRT. The most similar existing

mode is the public hire (hackney) taxi; the key similarities are:

1. The vehicles are small; they carry 2-6 passengers at once. These pas-

sengers will ordinarily be travelling together by choice, and they will

have the same origin and the same destination.

2. The system is demand-responsive; the vehicles do not run on schedules.

Passengers do not usually book in advance.

19

3. A vehicle takes its passengers directly from their origin to their des-

tination, without stopping to pick up others. The vehicle takes the

quickest path, without any detours.

The key differences between PRT and taxis are:

1. PRT vehicles are driven by computers instead of humans; guidance is

fully automatic.

2. Safe computer guidance currently requires that PRT vehicles run on

dedicated infrastructure that is physically separated from pedestrians

and normal road traffic.

3. Passengers can board and alight only at designated PRT stations.

Many PRT implementations are possible, and many PRT vendors have

proposed materially different designs. Some of the details remain controver-

sial. This section describes common features of both extant and commonly

proposed1 PRT implementations, with an emphasis on those that are relevant

to empty vehicle redistribution.

1.1.1 Networks

PRT vehicles run on dedicated guideways, which are typically grade-separated

from the roads and pavements used by cars and pedestrians (Figure 1.2). Be-

cause passengers cannot access the guideway directly, they must board and

alight vehicles at designated PRT stations.

In order to provide taxi-like service, PRT stations must be sited close

together, and they must cover the whole area to be served. The aim is

to make it comfortable for passengers to walk to their nearest PRT station.

PRT stations can also be integrated directly into the buildings that they serve

(Figure 1.3). It has been observed that people will not walk much more than

400m to reach a bus station (Anderson, 1978, p. 137), which implies that

PRT stations will typically be less than 800m (half a mile) apart.

1For simplicity, the present tense will be used throughout to refer to features of both
extant and commonly proposed implementations.

20

Figure 1.2: Photograph of an elevated two-lane PRT guideway section at
London Heathrow Airport. Nominal guideway elevation over a main road is
5.7m (18’ 8”). An ULTra vehicle is moving on the guideway, just left of the
central column. Photo courtesy of ULTra PRT Ltd.

21

Figure 1.3: Conceptual rendering of a PRT station built into the first floor
of a building. Rendering courtesy of ULTra PRT Ltd.

22

(a) (b)

Figure 1.4: The (a) Corby and (b) Grid PRT networks. Guideways (black
lines) are one-way in the direction indicated; circles represent stations in (a),
and letters represent stations in (b). These networks will be used as input
data for stochastic simulations in later chapters.

23

The need to construct a dense and extensive network of guideways is a

major drawback of PRT, because it is expensive and takes up scarce urban

space. It is therefore important not to use more guideway than necessary. It

is common (Anderson, 1978, pp. 64–67, 82–86) to connect the stations with

single lane, one-way loops of guideway. This reduces the amount of guideway

needed to cover the service area, compared to a network of two lane, two-way

guideways. The penalty is that journey times between some pairs of stations

are increased, because those trips must go the long way around a loop. This

penalty is small when the loops are small. Figure 1.4a shows the Corby case

study network from Bly and Teychenne (2005), which is an example of this

approach; it consists of four interconnected one-way loops of guideway.

Another commonly proposed network configuration (Fichter, 1964; Irving

et al., 1978; Anderson, 1978; Lowson, 2004) is a grid of elevated, one way

guideways with alternating directions, as illustrated in Figure 1.4b. This

is similar to the road networks found in the centres of many modern cities,

except that the PRT ‘avenues’ and ‘streets’ do not intersect where they cross;

instead, each junction is a fly-over. This increases capacity and precludes

some kinds of collisions. Planar networks based on concentric rings (Sirbu,

1974) or regular tilings of octagons and squares, have also been proposed

(Lowson, 1999).

1.1.2 Stations

PRT stations are generally built off-line, on a bypass lane (Figure 1.5). This

allows PRT vehicles to continue past stations that are on the way to their

destination without stopping. This contrasts with rail stations, which are

typically on-line: when a train stops at the station, it remains on the main

line, so it prevents other trains from passing through the station. The bypass

must be long enough for vehicles to decelerate from main line speed to a

standstill, and later to accelerate back to main line speed.

Within a station, passengers board and alight at berths. Berths can be

arranged in a line, or they can be staggered in a saw-tooth configuration,

as in Figure 1.5. A linear station has a smaller footprint than a saw-tooth

24

vehicle buffer

deceleration lane (not to scale)
berths

(“forward-in

reverse-out

saw-tooth”)

main line

vehicle flow

Figure 1.5: Schematic of an off-line PRT station. Vehicles (rounded rectan-
gles) that are not stopping at the station continue on the main line. Vehicles
that are stopping diverge from the main line and decelerate. Vehicles may
be held in a buffer before proceeding to a berth. Vehicles leaving the station
merge back onto the main line.

25

station; this reduces station cost, but it is less flexible, because vehicles in

the forward berths impede those behind. A saw-tooth station allows vehicles

some degree of random access to berths.

A station can also contain queue points, where vehicles can be stored

when all of the berths are taken. Queue points provide ‘buffer space’ that

can help deal with variability in the flow of vehicles in the station. Both

occupied and empty vehicles can wait at queue points. Queue points are

typically placed upstream of the berths, at the end of the deceleration lane; in

systems with asynchronous control (Section 1.1.4), it may also be desirable to

put queue points between the berths and the acceleration lane. Queue points

are typically arranged in one or more lanes; each lane is first-in-first-out. The

total number of berths and queue points limits the number of vehicles that

can be stored in a station and determines the maximum throughput of the

station. This ‘station sizing’ problem has been studied extensively (Waddell

et al., 1973; Sirbu, 1974; Johnson et al., 1976; Anderson, 2003; Won et al.,

2006; Schweizer and Mantecchini, 2007; Schweizer et al., 2010).

On the passenger side of the station, procedures are required for destina-

tion selection and, in most cases, fare payment. These may be done at the

berth (Figure 1.6), in the vehicle, or at the station entrance (Irving et al.,

1978, ch. 3). These affect empty vehicle redistribution mainly in terms of

how well the system can measure the number of waiting passengers at each

station, and also when it finds out about each passenger’s intended destina-

tion.

1.1.3 Vehicles

The details of automatic vehicle guidance are beyond the scope of this thesis.

Many different vehicle guidance and propulsion systems have been proposed

(Caudill et al., 1979; Lowson, 2003; Anderson, 2005; Featherstone, 2005).

Vehicles are typically electric. If power is supplied by on-board batteries

then this affects empty vehicle redistribution, because some empty vehicles

may have to be removed from service or delayed in order to charge. However,

we will not deal with this issue here.

26

Figure 1.6: Passengers at berths in the Terminal 5 station at Heathrow during
a capacity trial in March, 2010. Passengers use touch-screen destination
selection panels at berths to tell the system which station they want to travel
to. Photo courtesy of ULTra PRT Ltd.

27

1.1.4 Control Systems

Collisions are avoided by maintaining a minimum safe separation between

vehicles at all times; this is called the minimum headway. It is common to

use a ‘brick wall stop’ minimum headway, which is long enough to ensure that

if the lead vehicle were to stop instantaneously (as though it had become a

brick wall), the following vehicle would be able to stop in time to avoid a

collision. The minimum headway is 6.4s in the Heathrow application (ULTra

PRT, 2010) and 4s in the Masdar application (2getthere, 2011b). Shorter

minimum headways permit higher line capacity; for example, 4-passenger

PRT vehicles at 3s minimum headway give a line capacity of 4800 passengers

per hour, which is equivalent to 400-passenger trains running at 5 minute

headways. Minimum headways as low as 0.5s have been proposed for PRT

(Anderson, 1998). Research in Automated Highway Systems also indicates

that small minimum headways are technically achievable (Bender, 1991).

The two main methods for maintaining safe separation are known as

synchronous and asynchronous control. In synchronous control (also called

clear-path control), a central computer schedules each vehicle’s whole trip

before it leaves its origin station, ensuring that the chosen path does not

intersect that of any previously scheduled trip (Irving et al., 1978). To avoid

collisions, it is sufficient for the vehicles to stay on their allocated schedules.

The Heathrow application uses synchronous control (Lowson, 2003). Asyn-

chronous control is more decentralised. Each merge typically has a local

controller that coordinates the vehicles as they approach the merge. Many

systems have been proposed for this process (Munson, 1972; York, 1974;

Andréasson, 1994; Szillat, 2001; Anderson, 2003).

From the perspective of empty vehicle redistribution, the main difference

is that asynchronous control naturally allows vehicles (occupied or empty)

to be rerouted once they are moving, which gives the system more flexibility

to optimise empty vehicle routes (Andréasson, 2003). In principle, rerouting

is also possible with synchronous control using rescheduling, but it requires

that the central control system be able to communicate revised schedules to

all affected vehicles.

28

1.1.5 History

PRT has, perhaps surprisingly, a long history. The first published description

of PRT dates from 1964 (Fichter, 1964), and its author claims that he first

began work on the idea in 1953. Many other PRT implementations were pro-

posed from the late 1960s to the late 1970s, and several of these progressed

to full-scale test tracks. Notable examples include CVS in Japan (Ishii et al.,

1976), Aramis in France (Levy, 1976; Latour, 1996) and Cabintaxi in Ger-

many (Becker, 1976). All of these failed for political, technical or financial

reasons. In the United States, a PRT system was commissioned in 1970 to

connect three campuses of West Virginia University in Morgantown, West

Virginia, but in 1975, after several delays, budget overruns and redesigns,

the result was not a PRT system (Rydell, 2001). While this system, which

still operates today, is called the ‘Morgantown PRT’, it uses minibus-sized

vehicles that carry up to 20 passengers, so it is more properly called Group

Rapid Transit (GRT). Several other implementations were proposed and de-

veloped in the 1980s and 1990s, but none of these came to fruition. The

reader is referred to Anderson (1996) and Cottrell (2005) for more on the

history of PRT.

1.1.6 Capacity

The capacity of a transport system is the highest rate at which it can serve

passengers under ideal conditions. The capacity of a PRT system depends

on several factors, and the fact that it is a network system makes it difficult

to define any single number that captures the system’s capacity. The main

limitations on capacity are as follows.

1. Line capacity. The capacity of a single lane of PRT guideway is

determined by the system’s minimum headway and the capacity of

each vehicle (Anderson, 1978). This is analogous to the capacity of a

single road lane or rail line.

2. Station capacity. The capacity of an individual PRT station is de-

termined by the number of berths and queue points in the station and

29

the way in which they are arranged and managed (Won et al., 2006;

Schweizer et al., 2010).

3. Fleet capacity. The capacity of the fleet as a whole is determined

by the number of vehicles, the capacity of each vehicle and time taken

per trip. This includes both the occupied trip time and the empty trip

time. The total time taken per trip depends on the spatial distribution

of the passenger demand.

Which of these factors is limiting depends on the demand. They are

also interrelated; for example, congestion on the line can prevent vehicles

from leaving a station, which contributes to congestion in the station. Ride

sharing (Lees-Miller et al., 2009) is another important factor in determining

overall capacity; when the system is busy, several parties may choose to share

a vehicle. The main focus of this thesis will be on fleet capacity, because this

is directly affected by empty vehicle redistribution.

1.2 Modelling Assumptions

Microsimulation is the most common method used to model PRT systems.

Many detailed system simulation programs have been developed over the past

forty years; see Anderson (2007) for a recent survey. Most of these programs

are proprietary, though some are freely available (ULTra PRT, 2008; Xithalis,

2011) in limited form, and there are some early-stage open-source simulators

(Homerick, 2010). These programs simulate central control, stations, vehicles

and other subsystems at high levels of detail. They typically consist of many

thousands of lines of code and require considerable effort to develop and

describe. Here we will use simpler models that permit more focus on the

empty vehicle redistribution aspects of the system.

We will be concerned mainly with passenger waiting times. The three

main factors that determine passenger waiting times are congestion on the

guideway, congestion in stations and the availability and locations of empty

vehicles. For very large systems with many vehicles, congestion effects will

often be significant, but most systems proposed for the near and medium

30

term will operate well below the congested limit. This motivates the following

simplifying assumptions.

1. Congestion on the guideway is ignored, so vehicles take quickest paths,

and the trip times between stations are constants.

2. Congestion in stations is ignored; thus, any delays in stations are con-

stants incorporated in the trip times.

Under these assumptions, the relevant characteristics of a PRT network

are the number of stations and the quickest path times between those sta-

tions. The shortest path between each pair of stations network can be ob-

tained from a shortest paths algorithm, such as Dijkstra’s algorithm (Cormen

et al., 2001). Quickest path times can be obtained from shortest path dis-

tances by assuming an average vehicle speed (usually 10m/s), or directly

from a shortest paths algorithm, if nominal vehicle speed data are available

for each network link.

Let S denote the set of stations, and let nS denote the number of stations.

For each pair of distinct stations i and j in S, let tij denote the quickest path

trip time from i to j in seconds, and define constants tij = 0 when i = j.

Taken together, these tij form a trip time matrix with nS rows, nS columns

and zeros on the diagonal. For any three stations i, j and h in S, the trip

times satisfy the triangle inequality

tih + thj ≥ tij

because they are quickest path times. Moreover, because all stations are off-

line, it is assumed that the travel times satisfy the strict triangle inequality

tih + thj > tij (1.1)

That is, even if station h is ‘on the way’ from station i to station j, there is

a time penalty for stopping at h. This penalty is assumed to reflect any time

needed for acceleration and deceleration, passenger loading and unloading,

or congestion in the station.

31

The unit of passenger demand will be the request. Each request results

in a single occupied vehicle trip, which may be for an individual passenger

or a small party of passengers travelling together by choice. Each request r

has associated with it an origin station, ir, a destination station jr and the

time er at which the system receives the request. It is assumed that every

request is for immediate travel from its origin station, so the waiting time of

a request is the delay between er and when a vehicle picks up the request

from ir.

It is assumed that requests for travel from station i to station j are

received according to a Poisson process with rate dij in requests per minute,

where dij = 0 if i = j (no recreational trips). The Poisson processes for pairs

of stations are assumed to be independent and stationary (that is, the dij do

not vary with time). Taken together, these dij form a demand matrix with

nS rows, nS columns and zeros on the diagonal.

The capacity of a vehicle is defined to be one request. It is assumed

that the number of vehicles in the fleet is fixed, and that the vehicle fleet is

homogeneous (that is, vehicles are interchangeable). The set of vehicles will

be denoted K, and nK will denote the fleet size, which is simply the number

of vehicles in K.

1.3 Thesis Outline

We will begin Chapter 2 by working in the fluid limit, at the level of long-run

average flows of vehicles. This fluid limit analysis provides a way to charac-

terise the ‘heaviest’ demands that a given PRT system could possibly serve,

with an ideal EVR algorithm. This provides a benchmark against which

particular EVR algorithms can be compared, in terms of their throughput.

Chapter 2 then describes two simple EVR algorithms and tests them

against this benchmark. One of these algorithms, here called Bell and Wong

Nearest Neighbours (BWNN) (Bell and Wong, 2005), comes close to achiev-

ing maximum theoretical throughput in a variety of test scenarios. BWNN

is a reactive algorithm: it moves empty vehicles only in response to requests

that have already been received. It will be seen that this leads to large pas-

32

senger waiting times, even for light to moderate demands. The proactive

EVR algorithms introduced later (Chapter 4) are extensions to BWNN that

aim to reduce passenger waiting times at light to moderate demand.

Chapter 3 develops two benchmarks for passenger waiting times. The first

is based on a queueing theory approximation that uses the results of the fluid

limit analysis. The second benchmark is based on solving a static problem,

in which perfect information is available at the level of individual future

requests over some fixed horizon. This static problem is related to several

well-studied problems in the vehicle routing literature. It is NP-hard, but

small instances can be solved exactly with standard techniques, using a mixed

integer linear programming formulation. For larger instances, we develop a

simple constructive heuristic, here called Static Nearest Neighbours (SNN),

which is based on BWNN. For low to moderate demand (up to about 80%

of the theoretical maximum), SNN usually finds solutions with zero waiting

time. For higher demand, the heuristic provides a benchmark for achievable

waiting times.

Chapter 4 then introduces the two new proactive EVR heuristics, and it

compares the obtained waiting times to the benchmarks derived in Chapter

3. The new algorithms substantially reduce mean passenger waiting times

compared to reactive BWNN baseline, and they usually outperform algo-

rithms from the PRT literature in evaluations on a set of test scenarios.

The strengths and weaknesses of the new algorithms are also discussed, and

several cases in which they do not perform well are identified.

Chapter 5 discusses directions for future work and presents conclusions.

In particular, Section 5.1 describes the early stages of a different approach to

the EVR problem based on the theory of Markov Decision Processes (MDPs).

This approach can in principle produce algorithms that have stronger guar-

antees than the algorithms developed in Chapter 4. Whereas we have so far

explicitly partitioned the problem into reactive and proactive subproblems,

MDPs may allow us to formulate the problem in a unified way and pro-

duce operating policies that are optimal in a well-defined and rigorous sense.

However, finding these policies exactly is intractable. This section presents

a formal model of a PRT system and uses it to compute optimal policies for

33

some small systems. Finally, Section 5.2 summarises the thesis and discusses

several other directions for future work.

34

Chapter 2

A Benchmark for Throughput

The motivating question for this chapter is, ‘what demands can a given PRT

system serve?’ To answer this question, we will look at the behaviour of the

system in the fluid limit, at the level of long run average flows of vehicles.

To be precise, we will say the system can serve a given demand if it can

keep the mean number of waiting passengers (and thus their waiting times)

finite when that demand is held constant indefinitely. Otherwise, requests

are being received faster than the system can serve them, so the number

of waiting passengers (and thus their waiting times) will, on average, keep

growing forever.

Section 2.1 derives necessary conditions for a system to be able to serve

a given demand; these conditions are based on solving a well-known linear

program to find flows of empty vehicles in the fluid limit. The set of all

demands that satisfy these conditions will be called the system’s capacity

region. If the demand is outside of the the system’s capacity region, then

the system cannot serve the demand, regardless of which EVR algorithm

it uses. If the demand is inside the capacity region, then the system may

or may not be able to serve the demand, depending on how efficiently its

EVR algorithm uses empty vehicles. The capacity region thus provides a

benchmark for throughput, because its boundary describes the ‘heaviest’

demands that the system could possibly be expected to serve.

Section 2.2 introduces two simple EVR algorithms and Section 2.4 eval-

35

uates their throughput in simulation to determine how close they come to

achieving the benchmark defined by the capacity region. The simulations use

the case study scenarios described in Section 2.3. The case study scenarios

are divided into training scenarios, which were used to guide the develop-

ment of the algorithms developed in this thesis, and testing scenarios, which

were used only for evaluation. The use of separate training and testing sets

increases confidence in the presented conclusions.

One of the algorithms that we evaluate, which we call Bell and Wong

Nearest Neighbours (BWNN), is the simplest of three algorithms proposed

in Bell and Wong (2005) in the context of urban taxi systems. The results

show that BWNN very nearly achieves the maximum throughput predicted

by the capacity region analysis on several test scenarios, particularly when

the fleet size is large. BWNN is also of interest because the proactive EVR al-

gorithms developed in Chapter 4 will be formulated as extensions to BWNN,

which is itself a reactive EVR algorithm (that is, it does not move vehicles

in anticipation of future requests). For comparison, a second EVR algo-

rithm, which we will call Longest-Waiting-Passenger First (LWPF), is also

described. As its name suggests, it prioritises the passenger that has been

waiting longest, which is a common theme in the PRT literature (Ford et al.,

1972; Andréasson, 2003). Results with the LWPF algorithm will also be

compared with results from a proprietary PRT microsimulation to validate

modelling assumptions.

The main content of this chapter has been published previously in Lees-

Miller et al. (2010), but some additional detail is included here. The idea

to try to define the capacity region of a PRT system came from discussions

with Prof. F. P. Kelly. The connection between the capacity region and flow

conservation was suggested by Prof. R. E. Wilson.

2.1 The Fluid Limit and the Capacity Region

This section works with the fluid limit, at the level of long-run average flows

of vehicles between stations, rather than at the level of individual vehicles

and requests. We will begin by reviewing some results in the fluid limit that

36

that are well known in the PRT literature (Irving et al., 1978; Anderson,

1978; Andréasson, 1998; Delle Site et al., 2005; Won et al., 2006); they can

also be derived as a special case of the urban taxi economics model of Yang

et al. (2002). These results will then be interpreted in a new way to give

necessary conditions for a given demand to be in a system’s capacity region.

Consider a PRT system for which the set of stations, S, the trip times, tij,

and the demand matrix entries, dij, are defined as in Section 1.2. In the fluid

limit, we are interested in the flows of occupied and empty vehicles between

pairs of stations in this system. These flows are measured in vehicle trips per

unit time. The flows of occupied vehicles are simply the request rates from

the demand matrix, because we have assumed that there is no ride sharing

(that is, each request requires exactly one occupied vehicle trip). These flows

of occupied vehicles must be balanced by flows of empty vehicles, denoted

xij (i, j ∈ S; i 6= j; xij ≥ 0), such that the total (occupied plus empty) flow

of vehicles is conserved at each station:∑
j∈S
j 6=i

(dij + xij) =
∑
j∈S
j 6=i

(dji + xji) (2.1)

for each station i. That is, the total flow into each station must equal the

total flow out, because the fleet size must remain constant. The minimum

number of vehicles required to sustain these flows, c, is given by the sum-

product of the total flows and the trip times,

c =
∑
i,j∈S
j 6=i

tij (dij + xij) . (2.2)

For example, if the trip time for a particular station pair is tij = 3 minutes,

and the chosen empty vehicle flow is xij = 5 vehicle trips per minute, then

at least 15 vehicles will be required to sustain this flow.

In what follows, it will help to write these equations using vector notation;

let t, d and x be column vectors that respectively list the elements tij, dij,

and xij in order (for i 6= j). For example, t = (t1,2, t1,3, . . . , tnS ,nS−1)
′, where

nS is the number of stations and ′ (prime) denotes the transpose. Let b be

37

the vector of occupied vehicle surpluses at each station, with

bi =
∑
j∈S
j 6=i

(dji − dij) . (2.3)

Equations (2.1) and (2.2) can then be written succinctly as

Ax = b and c = t′(d + x) (2.4)

where A is a matrix with nS rows and n2
S − nS columns that encodes the

flow conservation constraints (2.1); it can be shown that each of its columns

contains one +1 entry and one −1 entry, and that all other entries are zero.

Because the system has only nK vehicles in total, it can serve demand

d only if c ≤ nK . This inequality and (2.4) give a necessary condition for

a demand d to be in the system’s capacity region: there must exist empty

vehicle flows xd for d such that

Axd = b, xd ≥ 0, and t′(d + xd) ≤ nK . (2.5)

If any such empty vehicle flows xd exist, it is clear from (2.5) that any flows

x∗d (not necessarily unique) that solve the linear program

min t′x

s.t. Ax = b

x ≥ 0

(2.6)

satisfy the conditions in (2.5). That is, x∗d is chosen to minimise the number

of empty vehicles used, subject to flow conservation.

Problem (2.6) is a special kind of linear program known as a minimum

cost network flow (MCNF) problem, because of the special structure of the

constraint matrix, A (Bertsimas and Tsitsiklis, 1997, p. 277). The MCNF

problem can be solved efficiently using a variety of standard techniques, such

as the network simplex method (Bertsimas and Tsitsiklis, 1997, ch. 7). It is

also common (for example (Irving et al., 1978, ch. 5.6)) to cast this problem

38

Figure 2.1: For the Corby case study network, an optimal solution to the
linear program problem (2.6) sends non-zero empty vehicle flow on the guide-
ways highlighted in red. The flows x∗d for each pair of stations are mapped
back onto the network by assuming that vehicles always take the quickest
paths between stations. This process also gives an estimate for the vehicle
flow (occupied or empty) on each link. Note that the empty vehicle flows
never form a cycle; this is a property of any optimal solution to a minimum
cost network flow problem (Bertsimas and Tsitsiklis, 1997).

as a transportation problem, which is a special case of the MCNF problem.

Note that the flows x∗d can be visualised by mapping them back onto the

network, as shown in Figure 2.1 for the Corby case study network.

In summary, a necessary condition for a demand d to be in the capacity

region is that

t′(d + x∗d) ≤ nK . (2.7)

It is not known whether (2.7) is also a sufficient condition; that is, there may

be systems and demands for which no EVR algorithm can prevent the number

of waiting passengers from diverging, even though (2.7) is satisfied. However,

simulation results in Chapter 4 show that for some systems, demands and

EVR algorithms, the bound (2.7) is very nearly attained.

In what follows, we will treat condition (2.7) as the definition of the

39

capacity region. We will also define the intensity of demand d as

ρd =
t′(d + x∗d)

nK
(2.8)

which is simply the number of vehicles required to serve the demand over

the number of vehicles in the fleet. Condition (2.7) is equivalent to requiring

ρd ≤ 1. The following examples illustrate the capacity region and intensity

concepts on some small networks.

Example 2.1 Consider a system with the two-station ring network shown

in Figure 2.2a and a single vehicle. The trip times are t12 and t21, the fleet

size is nK , and the demand matrix entries are d12 and d21. The demand

matrix entries are also the occupied vehicle flows, because we have assumed

that there is no ride sharing. For this small example, the required empty

vehicle flows can be determined directly as

x∗12 = max{d21 − d12, 0} (2.9)

x∗21 = max{d12 − d21, 0}

because any surplus in the occupied vehicle flow at one station can only be

sent to the other. The number of vehicles required is then given by (2.2) as

t12 (d12 + x∗12) + t21 (d21 + x∗21)

which simplifies to

max{d12, d21} (t12 + t21) . (2.10)

That is, in this case, the number of vehicles required is determined by the

larger of the two demands and the total length of the ring. The condition

(2.7) is then

max{d12, d21} (t12 + t21) ≤ nK . (2.11)

This constraint on the demand matrix entries, d12 and d21, defines the sys-

tem’s capacity region, which is shaded in Figure 2.2b. Similarly, the intensity,

ρd, is simply the minimum number of vehicles required (2.10) divided by the

40

1 2

t12
d12, x12

t21
d21, x21

(a)

ρd < 1

ρd > 1
nK

t12+t21

nK

t12+t21

d12

d21
0

0

(b)

1

2

3

4

t12

t21

t13 t31

t14

t41

(c)

d21

d31

d41

ρd > 1

ρd < 1

(d)

Figure 2.2: A two-station ring (a) and its capacity region (b). A four-station
star (c) with three ‘spokes’ and its capacity region (d) when all of the demand
is into the hub and all of the spokes have the same round trip time.

41

number available, so ρd ≤ 1 in the capacity region. Similar results can be

obtained for rings with more than two stations. �

Example 2.2 The capacity region of the four-station star network in Figure

2.2c has twelve dimensions, because this is the number of entries in the

demand matrix (4 × 4 entries minus the 4 on the diagonal that are defined

to be zero). It is therefore not possible to visualise it in its entirety, but we

can visualise some special cases, such as when there is tidal demand from the

spokes to the hub. In this case, only three of the demand matrix entries can

be non-zero, and we can visualise these dimensions.

The demand matrix entries that are allowed to be non-zero are d21, d31

and d41. The corresponding empty flows are then simply x∗12 = d21, x
∗
13 = d31

and x∗14 = d41, because the demand is tidal (one way) from the spokes to hub,

and flow conservation requires that the empty vehicles return to the spokes.

Condition (2.7) then simplifies to

d21(t12 + t21) + d31(t13 + t31) + d41(t14 + t41) ≤ nK (2.12)

which defines a plane when satisfied at equality. Together with the non-

negativity constraints on the demand matrix entries, this plane defines the

boundary of the capacity region, as shown in Figure 2.2d.

Each term in (2.12) is equal to the corresponding minimum number of ve-

hicles required (2.10) for a two-station ring under tidal demand. This means

that, so far as the capacity region is concerned, the network decomposes into

three independent two-station rings. If the round trip time between the hub

and station 2 (say) is increased, the capacity region contracts along the di-

mension d21, because each trip on that ring takes longer, and therefore ties up

a larger fraction of the vehicle’s fleet. If the fleet size, nK , is increased, the

capacity region expands proportionally. Similar results can been obtained

when the flow is tidal from the hub to the spokes. �

In both of the examples above, the capacity region is convex. In fact, this

is also a general result.

42

Lemma 2.1 (Convexity) The capacity region is convex. That is, if d1 and

d2 are demands in the capacity region, then the demand αd1 + (1− α)d2 is

in the capacity region for all α ∈ [0, 1].

Proof Demands d1 and d2 are in the capacity region, so there exist cor-

responding flows of empty vehicles x1 and x2 that satisfy conditions (2.5).

Let d = αd1 + (1− α)d2. To show that demand d is in the capacity region,

we must find a vector xd of empty vehicle flows that also satisfy conditions

(2.5). In particular, it can be shown that the vector xd = αx1 + (1−α)x2 is

such a vector, because each condition (2.5) is linear. �

The practical consequence of convexity is that if one has several demands

in the capacity region, for example an AM peak demand and a PM peak

demand, then any mixture (that is, convex combination) of these will also be

in the capacity region. It is also worth noting that the empty vehicle flows

xd used in the proof of Lemma 2.1 are not necessarily the optimal flows for

the combined demand, d, as illustrated by the following example.

Example 2.3 For the two-station ring network in Figure 2.2a on page 41

with t = (1/4, 1/4)′ and a single vehicle, the demands d1 = (1, 0)′ and d2 =

(0, 1)′ are both in the capacity region, because they satisfy the inequality

(2.11) together with their corresponding optimal empty flows x∗1 = (0, 1)′

and x∗2 = (1, 0)′ from (2.9). Using the notation from the proof of Lemma 2.1,

the convex combination of these two demands when α = 1/2 is

d = αd1 + (1− α)d2 = (1/2, 1/2)′

and the corresponding convex combination of empty vehicle flows is

xd = αx1 + (1− α)x2 = (1/2, 1/2)′

but the optimal empty vehicle flows are x∗d = (0, 0)′, because the demand is

balanced (that is, because d12 = d21 in (2.9)). �

This example shows that adding the optimal empty vehicle flows for two

demands does not necessarily give the optimal empty vehicle flows for the

43

combined demand. However, the optimal empty vehicle flows for a given

demand do scale in proportion to that demand, as stated in the following

lemma.

Lemma 2.2 (Proportionality) Let α ∈ < be a positive constant. If the

empty vehicle flows x∗d are an optimal solution to the linear program (2.6)

with demand d then the scaled empty vehicle flows αx∗d are an optimal

solution to the corresponding problem with demands αd. In other words,

x∗αd = αx∗d. (2.13)

Proof This follows from well-known sensitivity analysis results for linear

programs (Bertsimas and Tsitsiklis, 1997, ch. 5). �

Lemma 2.2 implies that the intensity ραd (2.8) of a scaled demand αd

scales in the same way; that is

ραd =
t′(αd + x∗αd)

nK
=

t′(αd + αx∗d)

nK
= α

t′(d + x∗d)

nK
= αρd. (2.14)

This property will be used to evaluate the throughput of the EVR algorithms

introduced in the next section.

2.2 Reactive EVR Algorithms

The preceding analysis of the fluid limit does not include an explicit EVR

algorithm. It gives a macroscopic description of the required empty vehicle

flows over the long run, but it does not determine the behaviour of the

system at the microscopic level, in terms of individual vehicle movements and

passenger requests. This section describes two simple EVR algorithms, here

called Bell and Wong Nearest Neighbours (BWNN) and Longest-Waiting-

Passenger-First (LWPF), that operate at this microscopic level.

44

2.2.1 Bell and Wong Nearest Neighbours (BWNN)

Following the notation from Section 1.2, let K be the set of vehicles, let S be

the set of stations, and let tij be the trip time from station i to station j. We

assume that each vehicle k ∈ K has a planned route, which consists of a list

of stations that it must visit in order. Each pair of adjacent stations defines

a trip, during which the vehicle may be occupied or empty. A vehicle’s

route changes over time: completed trips are deleted from the head, and

new occupied or empty vehicle trips are appended to the tail as they are

assigned. If a vehicle completes all of the trips in its list, it becomes idle at

the last station on its route. For simplicity, it is assumed that the lists are

not reordered, so for each vehicle k, it is enough to know the last station, dk,

that vehicle k was assigned to visit, and the time, ak, at which the vehicle

will arrive (or has already arrived) at dk. An idle vehicle is one whose ak is

in the past.

When a request is received, a vehicle is immediately assigned using the

following nearest neighbours heuristic, which we call Bell and Wong Nearest

Neighbours (BWNN). Each request, r, has associated with it an origin station

ir, a destination station jr and the time er at which the system receives

the request. BWNN immediately assigns the vehicle that minimises that

request’s waiting time, formally

k∗ = argmin
k

[max(0, ak − er) + t(dk, ir)] (2.15)

where the trip times tij are written t(i, j) here for readability. The first term,

max(0, ak−er), is the delay before the vehicle can start a new trip; note that

the vehicle cannot begin its trip in the past, before er. The second term,

t(dk, ir), is the required empty vehicle trip time; if k is already going to the

request’s origin station (dk = ir), then the empty vehicle trip time is zero,

because no empty trip is required. Finally, a tie-breaking rule is required

for when the argmin in (2.15) is not unique: for simplicity we choose the

minimum such vehicle index k.

45

The state of the assigned vehicle is then updated by setting

ak∗ ← max(er, ak∗) + t(dk∗ , ir) + t(ir, jr) (2.16)

dk∗ ← jr

to reflect the fact that vehicle k∗’s planned route now ends when it finishes

serving request r at station jr. The expression

max(er, ak∗) + t(dk∗ , ir) (2.17)

is the request’s pickup time, and t(ir, jr) is its occupied trip time. Note that

minimising the request’s waiting time in (2.15) is equivalent to minimising

its pickup time (2.17), because max(er, ak) = er + max(0, ak − er). Figure

2.3 illustrates the handling of vehicle request lists and the operation of the

BWNN algorithm on a small example.

2.2.2 Longest-Waiting Passenger First (LWPF)

In contrast with BWNN, the longest-waiting passenger first (LWPF) algo-

rithm requires that each vehicle store only its next destination; once it reaches

its destination, the system decides where it should go next. When a vehi-

cle becomes idle at its destination, it is dispatched to the longest-waiting

passenger. Precisely, the following steps are carried out at each time step t:

1. Each generated passenger (if there are any) joins the queue at his origin

station.

2. For each station i (in order of index, as order does not matter here):

(a) All vehicles finishing their trips to i at time t become idle at i.

(b) If there are both waiting passengers and idle vehicles at i, the

first passenger is removed from the queue and a vehicle becomes

inbound to his destination, j, with arrival time t + tij. This

step repeats until there are either no waiting passengers or no idle

vehicles at i.

46

C

A

BD

2

C

A

BD

C

A

BD

(b)

(c) (d)

after request C → D

after request C → A

2

1

C

A

BD

1
(a)

2

2

1

1

Figure 2.3: Illustration of the BWNN algorithm. There are four off-line
stations (labelled A - D) in a ring and two vehicles (labelled 1 and 2). Traffic
flow is anticlockwise. (a) Vehicle 1 is initially moving to station B, and vehicle
2 is idle at station A. (b) When a request for travel from C to D is received,
vehicle 1 is assigned, because it gives a smaller waiting time than vehicle 2.
Both an empty trip (dashed line) from B to C and an occupied trip (solid
line) from C to D are appended to vehicle 1’s route. Note that vehicle 1
stops at station B and station C (filled circles), but it does not become idle
at either station, because it has not finished its route. (c) However, vehicle
1 does become idle at D, because no further requests are assigned to it. (d)
When another request is received from C to A, vehicle 2 is assigned, and it
begins an empty trip to C. Note that vehicle 2 was idle at station A, so the
passenger’s waiting time might have been reduced by moving vehicle 2 to
station C proactively, before the request was received.

47

3. For each station i with waiting passengers, let hi be the arrival time of

the longest-waiting passenger.

4. For each station i with more waiting passengers than idle plus inbound

vehicles, in ascending order by hi, consider the stations j 6= i in ascend-

ing order by tji (breaking any ties randomly); choose the first station

(if any) that has more idle empty vehicles than waiting passengers, and

send an empty vehicle from this station to station i.

By prioritising the longest-waiting passenger, LWPF tries to flatten the

tail of the waiting time distribution; however, it will be seen in Section 2.4

that this adversely affects its maximum throughput.

2.2.3 Discussion

The BWNN and LWPF algorithms differ in how they decide which vehicles

to assign to incoming requests, and also in when they make these decisions.

The BWNN algorithm uses immediate assignment, because a vehicle is im-

mediately assigned to each request when it is received, and this assignment

is never changed. The LWPF algorithm uses delayed assignment, because a

vehicle is only assigned to a particular request when it arrives at the request’s

origin (in step 2(b), above). The two algorithms therefore use different state

representations, and they make subtly different assumptions about how the

system operates. This section discusses these differences.

BWNN assumes that the destination of each request is known when it is

received. This is because queues of passenger requests are stored implicitly

in the vehicles’ routes. At higher demand intensities, the vehicles’ planned

routes extend further into the future, as they accommodate more queued

requests. The destination of each request must be known in order to up-

date the assigned vehicle’s ak time (2.16). This is consistent with a system

in which the passengers select their destinations at the entrance to the sta-

tion, before they begin queueing. If destinations are instead selected at the

berths, then the number of requests at a given origin for which the system

knows destinations is limited by the number of berths at the station. This

48

is not important at low intensity, because the number of queued requests is

small, but the model is less accurate at very high intensity, when destinations

are selected at berths. A similar issue arises if destinations are selected in

vehicles.

Both BWNN and LWPF ensure that requests from the same origin station

are served in first-come-first-served order. For LWPF, this follows immedi-

ately from step 2(b). LWPF also guarantees that no vehicle can start an

empty trip from a station at which there are waiting passengers; BWNN,

however, does not have this property. It may happen that a passenger ar-

rives at some station after BWNN has assigned an inbound vehicle to an

earlier request from another station. This is again unlikely at low intensity,

but this behaviour may occur at higher intensities.

In principle, an algorithm that uses delayed assignment should be able

to perform better than an algorithm that can make only immediate assign-

ments, because it has more flexibility to adjust to new requests. For example,

a delayed assignment version of the BWNN algorithm could be created by

allowing re-optimisation of vehicle routes after the initial assignment. When

demand intensity is high, and the vehicles’ routes contain trips for several

requests, it might be possible to reduce empty vehicle travel and passen-

ger waiting times by reordering or swapping requests between vehicles. In

particular, it has been shown that re-optimising the destinations of empty

PRT vehicles that are already moving can be beneficial (Andréasson, 2003),

assuming that the control system is capable of rerouting vehicles (Section

1.1.4). Immediate assignment is therefore a pessimistic assumption.

On the other hand, immediate assignment does have some advantages.

One is that the system can tell each passenger when they will be picked

up, as soon as they request service, which may make their waiting time less

onerous. It is interesting to note that immediate assignment is the norm for

lifts (elevators) in Japan, for this reason (Strakosch, 1998), and also because it

allows passengers to wait at the correct elevator shaft. Immediate assignment

also avoids complications such as the “indefinite deferment” of requests at

outlying stations (Psaraftis, 1995); this refers to a situation where greedy

re-optimisation of vehicle routes causes some requests never to be served,

49

even though the system has spare capacity.

2.3 Training and Testing Data

To evaluate the performance of the EVR algorithms developed in this thesis,

a variety of scenarios have been collected from PRT system ‘case studies’ in

the literature or synthesised to test particular features. Here a scenario is

defined by a trip time matrix, a demand matrix and a fleet size; note that

under the assumptions in Section 1.2, the network topology is not important.

The scenarios are partitioned into training scenarios, which were used to

guide the development of the algorithms, and testing scenarios, which were

used only for the final evaluation, after the details of the algorithms had been

finalised. The use of a separate test set provides increased confidence that

conclusions about the performance of the proposed algorithms will generalise

to scenarios other than those for which they were developed.

2.3.1 Training Scenarios

The training scenarios consist of a mixture of case studies and synthetic

scenarios. The full set of data files is provided on the compact disc that

accompanies this thesis. We will frequently make use of the Corby and Grid

case studies described below, because they are representative examples.

The Corby scenario is taken from the case study described in Bly and

Teychenne (2005). The network layout (Figure 1.4a on page 23) and demand

used in this study are both publicly available as part of the ATS/CityMobil

PRT simulator (ULTra PRT, 2008). The demand matrix represents the AM

peak for phase one of the proposed system. There are 15 stations. The fleet

size is set to 200 vehicles, as is estimated in the case study.

The Grid scenario is synthetic. The network is a regular grid of one-

directional guideways with 24 stations located at the line midpoints (Figure

1.4b on page 23); this idealised topology appears several times in the PRT

literature (Irving et al. (1978), ch. 2, for example). Lines are spaced at

800m (0.5mi) to provide 400m (0.25mi) maximum walk distances. Assum-

50

ing 10m/s (22mph) average speed, adjacent stations are 80s apart, and the

maximum station-to-station travel time is 12 minutes (e.g. from B to G).

The demand matrix for the grid scenario is obtained from a standard gravity

model (Chakroborty and Das, 2003) with

dij =

aibjoidj exp(−θtij) i 6= j

0 i = j
(2.18)

where oi and dj are the desired total origin and destination flows, θ is the

dispersion parameter, and tij is the shortest path trip time, in seconds, from

i to j. The aim of the gravity model is to find dij of the form (2.18) that

satisfy the constraints

oi =
∑
j

dij and dj =
∑
i

dij. (2.19)

This is done by finding suitable values for the ai and bj coefficients; in par-

ticular, (2.18) and (2.19) imply that

ai =

∑
j
j 6=i

bjdje
−θtij

−1

and bj =

∑
i
i 6=j

aioie
−θtij

−1

, (2.20)

which can be solved by fixed-point iteration. The oi and dj are chosen to

represent an ‘AM peak,’ as given in Table 2.1. The θ parameter is initially

set to 0.01; other values of θ, which generate different demand patterns, are

considered in Lees-Miller et al. (2010). The fleet size is set at 200 vehicles.

2.3.2 Testing Scenarios

Six testing scenarios were chosen from a set of thirty scenarios created by

second-year engineering design students in a ten-hour course module. The

students worked in groups of roughly four; each group was asked to design

a PRT system on a site of their choosing. They estimated several demand

matrices for different times of day based on the major demand generators

51

5.0 5.0 5.0
5.0 3.8 3.8 5.0

3.8 2.5 3.8
5.0 2.5 2.5 5.0

3.8 2.5 3.8
5.0 3.8 3.8 5.0

5.0 5.0 5.0

(a) Origin flow % (oi)

0.8 0.8 0.8
0.8 3.8 3.8 0.8

3.8 15.0 3.8
0.8 15.0 15.0 0.8

3.8 15.0 3.8
0.8 3.8 3.8 0.8

0.8 0.8 0.8

(b) Destination flow % (dj)

Table 2.1: Total flows for the Grid scenario gravity model. Table layouts
correspond to the station layout in Figure 1.4b. For example, the top left
station (labelled J) is the origin of 5.0% of passenger requests and the desti-
nation for 0.8%.

Name Fleet Size Requests/hour at ρd = 1
T1 504 1345
T2 64 857
T3 134 1330
T4 349 1294
T5 116 1020
T6 55 914

Table 2.2: Basic data for the testing scenarios. Requests/hour at ρd = 1
refers to the total request rate (summed over all station pairs) when the
demand is scaled to intensity (2.8) one.

for their site. They designed the networks using the ATS/CityMobil PRT

network design and simulation tool (ULTra PRT, 2008). To guide the design,

a generalised cost function was provided that included infrastructure costs,

vehicle costs and passenger waiting times, as estimated in simulation.

The six testing scenarios were selected with a preference for demands in

which there were many stations with an overall deficit of empty vehicles, as

given by (2.3). This choice was based on the observation that such demands

are more challenging for the proactive algorithms described in Chapter 4.

The scenarios cover a range of total demands and fleet sizes, as listed in

Table 2.2. Figure 2.4 shows the networks and Figure 2.5 shows the demand

matrices.

52

(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Networks for the testing scenarios T1 – T6 ((a) – (f)). Stations
are marked with blue squares. Scenarios T2 and T3 have similar networks,
because they were created by members of the same group; the same is true
of scenarios T4 and T5. However, the scenarios have different demands, as
shown in Figure 2.5.

53

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(e)

●

●

●

●

●

●

●

●

●

●

●

●

●

(f)

Figure 2.5: Desire line diagrams for the testing scenarios T1 – T6 ((a) –
(f)). Each arrow corresponds to an entry in the demand matrix for the given
scenario; arrows are only shown for the largest 10% of entries, to reduce
clutter. Thicker, brighter arrows indicate more demand.

54

2.4 Evaluation of Throughput

The BWNN and LWPF algorithms have been implemented in simulation.

Passenger requests from station i to station j are generated according to a

Poisson process with rate dij. For convenience, request and trip times are

rounded up to the next integer second. The main outputs of interest here

are passenger waiting times and vehicle utilisation, which is the fraction of

the vehicle fleet that is moving (that is, not idle) in each time step. The

steady state distributions of these outputs are estimated by running long

simulations with the demand matrix held constant for each run.

To benchmark an EVR algorithm in terms of throughput, we use it in a

series of simulation runs, each with a more intense demand than the previ-

ous run, and measure the saturation intensity, which is the lowest intensity

at which the number of waiting passengers begins to diverge. The bench-

mark is saturation intensity one, which corresponds to maximum theoretical

throughput.

To obtain a series of progressively more intense demands, we take the

initial demand, d, for a given scenario and scale it up or down to produce a

family of demands with different intensities but the same spatial distribution.

In particular, each run uses a scaled demand αd for a positive constant α,

and the desired family of demands is obtained by sweeping α from near zero

up to ρ−1d . This is because the intensity, ραd, of the scaled demand satisfies

ραd = αρd by (2.14), and αρd = 1 when α = ρ−1d . Geometrically, d defines

the direction of a ray in n2
S−nS dimensions, and ||d||/ρd is the distance from

the origin to the boundary of the capacity region in the direction of d.

2.4.1 Results for BWNN and LWPF

Figure 2.6 shows the simulation results. Intensity is increased in increments

of 0.01, and each point is based on data from 10 independent trials. Each

trial consists of a 10-hour (in simulated time) warm up period, in which no

statistics are collected, followed by 80 simulated hours of statistics collection.

Running the simulation for a long time makes the saturation intensity easier

to identify, because the observed queue lengths and mean waiting times in-

55

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
0
0

1
5
0

2
0
0

Corby Network

c
o
n
c
u
rr

e
n
tl
y
 m

o
v
in

g
 v

e
h
ic

le
s

total

occup.occup.

emptyempty

(a)

BWNN
LWPF

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
0
0

1
5
0

2
0
0

Grid Network

total

occup.occup.

emptyempty

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
0
0

1
5
0

2
0
0

m
e
a
n
 p

a
x
 w

a
it
in

g

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
0
0

1
5
0

2
0
0

(d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
2
0
0

4
0
0

6
0
0

intensity

w
a
it
 t
im

e
 (

s
e
c
o
n
d
s
)

(e)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
2
0
0

4
0
0

6
0
0

intensity

90%ile

mean
(f)

Figure 2.6: Simulation results for the BWNN and LWPF EVR algorithms.
Saturation intensities are similar for the Corby network but different for the
Grid network; LWPF shows higher empty vehicle use when there are passen-
gers waiting at many stations. Until divergence, LWPF gives lower waiting
times and queue lengths. Intensity 1.0 corresponds to 1414 requests/hour on
Corby and 2035 requests/hour on Grid; normalising using theoretical capac-
ity helps comparison between different networks.

56

crease in proportion to the running time when the queue is diverging. The

fleet utilisation (Figures 2.6a and 2.6b) also reaches its maximum at the

saturation intensity.

Figure 2.6a shows that both algorithms saturate very close to the pre-

dicted intensity on the Corby network, because the number of concurrent

vehicles reaches the fleet size near intensity 1.0. Figure 2.6b shows the same

measure for the Grid network; in this case, the EVR algorithms both satu-

rate at intensities less than 1.0 (LWPF at 0.85 and BWNN at 0.96). This is

also apparent in Figures 2.6d and 2.6f, where the mean number of waiting

passengers and their waiting times diverge at roughly the same intensities.

It appears that neither LWPF nor BWNN attains the theoretical maximum

throughput for all networks and demands; it is not yet known whether there

is any practical algorithm that does.

One notable feature of Figure 2.6b is that for LWPF the number of con-

current empty vehicles increases suddenly at intensity 0.80. This increase in

concurrent empty vehicles prevents an increase in the number of concurrent

occupied vehicles, since at intensities above 0.80, the system is serving the

same number of passengers with more empty vehicle movement. The rea-

son is that, when a vehicle becomes idle, it must serve the longest-waiting

passenger, regardless of his location in the network. When there are stand-

ing queues at many of the stations, the average empty vehicle trip may be

significantly longer for LWPF than for BWNN.

Figures 2.6e and 2.6f show long waiting times even when intensity is near

zero, and they increase only slowly with intensity. This is because the EVR

algorithms used here are reactive EVR algorithms – they do not move vehicles

in anticipation of future passengers. For example, even if there is tidal flow

from an origin i to a destination j, vehicles stay at j until a passenger arrives

at i and requests a vehicle, so all passengers wait at least tji, regardless of the

intensity. In this case, it is clear that the system should move vehicles back

to i. Proactive EVR algorithms that handle the general case are developed

in Chapter 4.

57

2.4.2 Results on the Test Scenarios

Figure 2.7 shows simulation results with BWNN on the test scenarios (Sec-

tion 2.3.2). The results are consistent with those obtained on the training

scenarios. Saturation intensities range from 0.93 to very nearly 1.0, so BWNN

comes close to attaining the theoretical maximum intensity. The scenarios

with the lowest saturation intensities are also those with the smallest vehicle

fleets. Scenarios T2 and T6 saturate at intensities 0.93 and 0.94, respectively,

and have 64 and 55 vehicles, respectively, whereas scenario T5 has 116 ve-

hicles, and it saturates at intensity 0.97. This indicates that the nearest

neighbour approach becomes more effective, in terms of throughput, as the

fleet size increases.

Bell and Wong (2005) also describe and test two variants on BWNN,

called H1 and H2, that modify the BWNN assignment rule (2.15) to con-

sider forecasted future demand. Like BWNN, H1 and H2 are reactive, be-

cause they move vehicles only in response to requests that have already been

received; however, they may be able to reduce waiting times at high intensity

by reducing empty vehicle use, thereby increasing the saturation intensity.

The H1 and H2 heuristics have also been evaluated on the test scenarios. H1

measurably increases the saturation intensity for the T2 and T6 networks,

which have the smallest fleet sizes and the lowest saturation intensities for

BWNN, when its α parameter is around 0.5. No measurable change in sat-

uration intensity was observed for H2.

2.4.3 The Effects of Line Congestion

The analysis and simulation done so far has assumed that line capacity is

infinite. There are certainly networks and demands for which this is a poor

assumption, so it is prudent to check these results against a more detailed

simulator that includes line congestion. Here, a proprietary simulator devel-

oped by ULTra PRT Ltd is used.

The line congestion delays for a given demand depend on the control sys-

tem used to maintain safe separation between vehicles. This control system

includes both scheduling and routing components. Because PRT systems are

58

intensity

fle
et

 u
til

is
at

io
n

80%

85%

90%

95%

100%

(a)

0.80 0.85 0.90 0.95 1.00

intensity

m
ea

n
re

qu
es

t w
ai

tin
g

tim
e

(s
)

0

300

600

900

1200

1500

1800

(b)

0.80 0.85 0.90 0.95 1.00

scenario

Corby

Grid

T1

T2

T3

T4

T5

T6

Figure 2.7: Fleet utilisation (a) and mean waiting times (b) for BWNN on
the test scenarios at intensities above 80%. As on the training data, BWNN
delivers high throughput; saturation intensities are consistently above 0.9.
Here intensity is increased in increments of 0.01, and each point is the average
of five runs with 105 requests per run.

59

network systems, it is often possible to route around congestion. However,

the algorithms for accomplishing this are beyond the scope of this thesis.

The proprietary simulator has been configured to use simple synchronous

control (Irving et al., 1978, pp. 92–94). As described in Section 1.1.4,

synchronous control means that a central computer schedules each vehicle’s

whole trip before it leaves its origin station, ensuring that the chosen path

does not conflict with that of any previously scheduled trip; vehicles are re-

sponsible only for staying on their allocated schedules. Intelligent routing

has been disabled, so vehicles are restricted to the path with the smallest

free-flow time. This gives a pessimistic estimate of the line throughput that

is realistically achievable

The proprietary EVR algorithm has been configured to closely (but not

exactly) match the LWPF algorithm. The curves in Figures 2.8a and 2.8b are

very similar to those in Figures 2.6c and 2.6d when the minimum headway is

1s; in particular, the saturation intensities are roughly the same. When the

minimum headway is increased, the line capacity is decreased, so delays due

to line congestion become more likely; these delays contribute to the overall

trip times (effectively increasing the tij), which causes the number of waiting

passengers to diverge at lower intensity. In this case, reducing line capacity

by a factor of 2 (or more, in the Grid network) produces only small changes

in Figure 2.8. Of course, this might not be the case with larger fleet sizes or

smaller travel times.

60

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
1

0
0

1
5
0

2
0

0

intensity

m
e

a
n

 p
a
x
 w

a
it
in

g

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
1

0
0

1
5
0

2
0

0

intensity

1s 2s 4s 6s

Corby Grid

Figure 2.8: Effect of line congestion on mean queue length for varying mini-
mum headway (Section 1.1.4). Queues diverge at the same intensities as in
Figure 2.6 on page 56, validating model assumptions. The Grid network is
operating far below maximum line capacity with 200 vehicles; more could be
added. The Corby system is closer to line capacity: if the minimum headway
exceeds 2s, delays due to line congestion reduce throughput.

61

62

Chapter 3

Benchmarks for Passenger

Waiting Time

The motivating question for this chapter is, ‘what is the lowest mean pas-

senger waiting time possible for a given scenario?’ We will develop two ap-

proaches that give partial answers to this question. Each provides a bench-

mark against which the mean waiting times obtained by particular EVR

algorithms can be compared, in order to estimate the potential for further

improvement.

The first approach (Section 3.1) combines the results of the fluid limit

analysis in Chapter 2 with a standard queueing model called an M/G/s

queue. In particular, the queueing model is used to estimate the passenger

waiting time distribution from the demand intensity (2.8). This queueing ap-

proximation is exact (under the assumptions in Section 1.2) when all requests

originate from a single station. When there are multiple origin stations, the

queueing approximation tends to be optimistic; that is, it underestimates the

achievable passenger waiting times.

The second approach (Section 3.2) is to consider a static version of the

EVR problem. The actual EVR problem is dynamic, meaning that new re-

quests are received as the system operates, and stochastic, because there is

uncertainty about where and when future requests will be received. In the

static problem, we instead consider a fixed set of future requests, each with

63

a known origin, destination and time of receipt, and we aim to minimise the

total waiting time for these requests. An optimal solution for an instance

of the static problem provides a benchmark for waiting times; in particular,

no algorithm for the dynamic EVR problem, in which information about the

future is available only at a statistical level, can do better on that instance.

Comparison of the performance of dynamic and static problems is known

as competitive analysis (Mitrovic-Minic et al., 2004; Berbeglia et al., 2010).

The static EVR problem is closely related to several well-studied problems

in combinatorial optimisation and vehicle routing. It will be seen that the

static EVR problem is NP-hard, but exact solutions can be obtained for small

instances. For larger instances, a simple heuristic, here called Static Near-

est Neighbours (SNN) is given; SNN is structurally similar to the BWNN

heuristic developed in Section 2.2.1. It will be seen that SNN can often find

solutions with zero waiting time (which are clearly optimal) when the inten-

sity of the demand is low or moderate (around 0.8 on the training scenarios).

(The SNN heuristic is also used later as a part of the Sampling and Voting

algorithm introduced in Chapter 4.)

The queueing model in Section 3.1 has not been published. The use of

the static EVR problem and the SNN heuristic for benchmarking has been

published in Lees-Miller and Wilson (2011). Some of the details of the static

EVR problem (in particular Section 3.2.1) have been described in Lees-Miller

and Wilson (2012).

3.1 An M/G/s Queueing Model

Queueing models are used to model a wide variety of systems. An illustrative

and historically important example is a telephone call centre. The call centre

has a given number of agents that serve incoming calls. If a call is received and

there is an available agent, the agent immediately answers the call; otherwise,

the call is queued. Calls in the queue are answered in the order in which

they are received, as agents become available. The time at which each call is

received and the time needed to serve the call, once an agent has answered it,

are both random. We are interested mainly in the time that a call must wait

64

in the queue before it is answered, which is also random; its distribution is

determined by (i) how quickly calls are being received, (ii) how quickly each

call can be served once it has been answered, and (iii) the number of agents.

One way to apply such a queueing model to a PRT system is to treat

passenger requests as calls and vehicles as agents. The rate at which requests

are received is set by the demand matrix. The service time for a request

consists of an occupied trip time and an empty trip time. The distribution of

the occupied trip time is determined by the demand matrix and the network

travel times, and a distribution for the empty trip time can be computed

from an optimal solution to the linear program (2.6), as described below.

Consider a scenario with trip times tij, fleet size nK , and a fixed demand

with demand matrix entries dij, as in Section 1.2. Let x∗ij denote the empty

vehicle flow from station i to station j in an optimal solution to the linear

program (2.6). To simplify notation, let

diσ =
∑
j∈S
i 6=j

dij, dσj =
∑
i∈S
i 6=j

dij, and dσσ =
∑
i,j∈S
i 6=j

dij (3.1)

denote the row, column and total sums of the demand matrix, and define

x∗iσ, x∗σj, and x∗σσ similarly.

In what follows, we will exclude stations that have no demand; this is

because a station with no demand also has no empty vehicle flow in any

optimal solution to the linear program (2.6), so a vehicle that moves according

to this optimal solution will never stop there, so it has no effect. More

formally, if diσ = dσi = 0 for some station i, then no empty vehicle flow is

required to satisfy flow conservation (2.1), and the fact that the trip times

satisfy the strict triangle inequality (1.1) guarantees that x∗iσ = x∗σi = 0 in

any optimal solution.

3.1.1 Random Walk Model for Empty Vehicle Trips

Each request requires one occupied vehicle trip, with origin and destination

as determined by the request, and zero or more empty vehicle trips to the

origin of the next request that happens to be assigned to the same vehicle.

65

The sequence of empty trips can be viewed as a random walk through the

network. However, we will see that if an empty vehicle moves according

to the flows x∗ij, then this random walk consists of at most one trip. The

distribution of the total (occupied plus empty) time required to serve a single

request can then be computed.

The probabilities that govern the random walk are as follows. Consider

a vehicle that has just completed an occupied trip to station j ∈ S; it may

now make an empty trip to another station, or it may stay at j. Define

pjh =
x∗jh

djσ + x∗jσ
(3.2)

as the probability that the vehicle’s next trip is to station h ∈ S, when

h 6= j. The denominator in (3.2) is the total (occupied plus empty) flow

out of station j; it is guaranteed to be positive, because we have excluded

stations with no demand. The probability that the vehicle stays at j is then

set to

pjj = 1−
∑
h∈S
j 6=h

pjh (3.3)

so that the pjh sum to one.

To establish that the empty vehicle’s random walk will consist of at most

one trip, we use the following properties of the flows.

Lemma 3.1 If the trip times tij satisfy the strict triangle inequality (1.1),

then any station with empty vehicle flow in has no empty flow out; that is,

x∗σj > 0 =⇒ x∗jσ = 0 (3.4)

for each station j ∈ S.

Proof Suppose that both x∗σj > 0 and x∗jσ > 0. In this case, there must

exist stations i ∈ S, with i 6= j and x∗ij > 0, and h ∈ S, with h 6= j and

x∗jh > 0. Let ε = min{x∗ij, x∗jh} denote the flow from i through j to h. The

contribution of this flow to the objective function t′x of the linear program

66

(2.6) is then ε(tij + tjh). However, the strict triangle inequality implies that

ε(tij + tjh) > εtih

so the objective value would be reduced if the flow went directly from i to

h, without going through j. This contradicts the premise that we have an

optimal solution. �

The number of trips in the vehicle’s random walk is then as follows. There

are zero trips if x∗jh = 0 for all h 6= j, since this implies pjh = 0 for all h 6= j,

and pjj = 1. Otherwise, we have x∗σh > 0, and Lemma 3.1 implies that

x∗hσ = 0, so there is no empty flow out of h, and the vehicle’s random walk

ends there, after one trip.

3.1.2 The Service Time Distribution

We have now established that each passenger request requires one occupied

vehicle trip and at most one empty trip. Let the random variables I and J

denote the origin station and destination station of the request, respectively,

and let the random variable H denote the destination of the empty vehicle

trip (which may be J). The service time of the request is then a random

variable

τ = tIJ + tJH (3.5)

with distribution defined by the joint distribution of I, J and H.

The demand matrix defines the joint probability distribution of I and J ,

namely

Pr(I = i, J = j) =
dij
dσσ

(3.6)

for i ∈ S and j ∈ S. The distribution of the empty trip’s destination, H,

conditional on the occupied trip’s destination, J , is

Pr(H = h|J = j) = pjh (3.7)

67

for pjh as defined in (3.2) and (3.3). The full joint distribution is then

Pr(I = i, J = j,H = h) = Pr(H = h|I = i, J = j) Pr(I = i, J = j)

= Pr(H = h|J = j) Pr(I = i, J = j) (3.8)

=
dijpjh
dσσ

.

In the next section, we will be interested mainly in the expected service

time, E[τ]. By the linearity of expectation, we have E[τ] = E[tIJ] + E[tJH].

For the expected occupied trip time,

E[tIJ] =
∑
i∈S

∑
j∈S

tij Pr(I = i, J = j) (3.9)

=
∑
i∈S

∑
j∈S

tij(dij/dσσ)

=
t′d

dσσ
.

For the expected empty trip time, we need the joint distribution of J and H,

which is

Pr(J = j,H = h) = Pr(H = h|J = j) Pr(J = j)

= Pr(H = h|J = j)

(∑
i∈S

Pr(I = i, J = j)

)

= pjh

(∑
i∈S

dij
dσσ

)
=
dσjpjh
dσσ

where the second equality comes from summing out the possible origin sta-

68

tions, I. The expected empty trip time is then

E[tJH] =
∑
j∈S

∑
h∈S

tjh
dσjpjh
dσσ

(3.10)

= dσσ
−1
∑
j∈S

dσj

∑
h∈S
h6=j

tjhpjh + tjjpjj

= dσσ

−1
∑
j∈S

dσj
∑
h∈S
h6=j

tjh

(
xjh

djσ + x∗jσ

)

= dσσ
−1
∑
j∈S

(
dσj

djσ + x∗jσ

)∑
h∈S
h6=j

tjhxjh

=
t′x∗d
dσσ

where the last equality holds because for each j, either x∗σj = 0, in which

case
dσj

djσ + x∗jσ
=
dσj + x∗σj
djσ + x∗jσ

= 1

by flow conservation (2.1), or x∗σj > 0, in which case xjh = 0 for all h, by

Lemma 3.1. In summary, the expected service time is

E[τ] =
t′(d + x∗d)

dσσ
. (3.11)

3.1.3 The Queueing Model

More formally, the model that we will consider here is an M/G/s queue, in

Kendall notation (Adan and Resing, 2002). The ‘M’ (for Markovian) means

that requests are received according to a Poisson process. The ‘G’ refers to

a general service time distribution; in particular, we will use the distribution

of the service time τ (3.5). The ‘s’ denotes the number of servers, which in

our case is also the number of vehicles, nK .

Let λ be the mean arrival rate, and let µ be the mean service rate (the

reciprocal of the mean service time). The stability condition for the M/G/s

69

queue with nK servers is λ/µ < nK . When λ = dσσ and µ = τ−1, this

condition is

t′(d + x∗d) < nK

by (3.11), which matches the capacity region condition (2.7).

No exact analytical results are known for the mean waiting time in an

M/G/s queue when s > 1. When s = 1, the Pollaczek-Khinchine formula

gives a closed-form expression for the mean waiting time, but no such closed

form is known for the multi-server case (Adan and Resing, 2002). A large

literature is available on approximations for the M/G/s queue; see Boxma

et al. (1979) and, for a recent survey, Gupta et al. (2010). Closed form re-

sults are known for the M/M/s queue (Adan and Resing, 2002), in which the

service time distribution is Markovian. However, Markovian service times

with a sufficiently large mean tend to be over-dispersed relative to the dis-

tributions obtained from (3.8) for τ . There are efficient numerical schemes

for the M/D/s queue (Tijms, 2006), in which service times are deterministic.

In what follows, we will simply use simulations to estimate the performance

measures.

3.1.4 Results

Figure 3.1 shows the mean passenger waiting time estimated using the M/G/s

queueing model on the 4-station star network from Example 2.2 with varying

fleet sizes. For all fleet sizes, waiting times are near zero when the intensity

is near zero, and they diverge as the intensity approaches one. However, the

fleet size significantly affects the shape of the curve in between; for larger

fleet sizes, the queueing model predicts a flatter curve at low intensity and a

steeper asymptote at intensity one. In practical terms, this means that the

queueing model predicts that a PRT system with many vehicles can run at

high utilisation and still provide low passenger waiting times. For example,

at intensity 0.8 with five-minute one-way trip times, the mean waiting time

with six vehicles is 150s, but it is near zero with sixty vehicles. Doubling the

trip times increases these figures slightly, as shown in Figure 3.1b.

70

Figure 3.2 compares the mean waiting time predicted by the queueing

model with that obtained by the SV algorithm that will be described later in

Section 4.1; SV gave the lowest mean passenger waiting times so far achieved

for this scenario. When the demand is from the hub to the spokes (Figure

3.2a), the two curves match closely, as expected, because the queueing model

is exact when there is one origin. When the demand is from the spokes to

the hub (Figure 3.2b), the queueing model predicts lower waiting times than

those that are achieved by SV. However, the gap diminishes as the fleet size

increases, so in this case low waiting times can indeed be obtained even at

high utilisation, when the fleet size is large.

These results illustrate the main simplification made in the M/G/s model:

it assumes that the assigned vehicle is idle at the request’s origin station. In

practice, there may be idle vehicles, but they may be located at the wrong

station, and in this case the passenger incurs an extra wait that is not in-

cluded in the queueing model. Proactive empty vehicle movement, using

algorithms such as SV, can make this less likely to occur, particularly when

the fleet size is large. These results also show that the benchmark provided

by the M/G/s model is sometimes attainable. The next section develops

another benchmark based on a different principle.

3.2 The Static EVR Problem

This section formally describes the static version of the EVR problem, in

which all of the requests to be served are known in advance. Section 3.2.1

constructs a vehicle-request graph that will allow us to formulate the problem

succinctly in Section 3.2.2. Related problems in the combinatorial optimisa-

tion and vehicle routing literature are discussed in Section 3.2.3; the main

conclusion is that the static EVR problem is NP-hard. Section 3.2.4 derives

a Mixed Integer Linear Programming (MILP) formulation that was used to

solve small instances for validation purposes. Finally, Section 3.2.5 describes

a simple constructive heuristic that provides good solutions for very large

instances.

71

intensity

m
ea

n
re

qu
es

t w
ai

tin
g

tim
e

(s
)

0
60

120
180
240
300
360
420
480
540
600

one way trip time = 5 minutes

(a)

0.2 0.4 0.6 0.8 1.0

one way trip time = 10 minutes

(b)

0.2 0.4 0.6 0.8 1.0

vehicles

1 6 15 30 60

Figure 3.1: Mean waiting times for the M/G/s model on the 4-station star
from Figure 2.2c on page 41 for varying fleet sizes, with five-minute (a)
and ten-minute (b) one-way trip times. When the fleet size is large, the
mean waiting time curve is flatter at low and moderate intensities, and it
has a sharper asymptote at intensity one. These curves are computed using
simulation; each point is the average of 5 runs of 0.5 million requests.

72

intensity

m
ea

n
re

qu
es

t w
ai

tin
g

tim
e

(s
)

0
60

120
180
240
300
360
420
480
540
600

hub to spokes

(a)

0.2 0.4 0.6 0.8 1.0

spokes to hub

(b)

0.2 0.4 0.6 0.8 1.0

vehicles

1 6 15 60

method

M/G/K SV

Figure 3.2: Comparison of mean waiting times on the four-station star for
the M/G/s model and the SV algorithm. SV gives the lowest waiting times
achieved in practice for these scenarios. It will be described in Section 4.1.
Mean waiting times for SV match those for the M/G/s model when the
demand is tidal from the hub to the spokes (that is, when there is a single
origin). When the demand is tidal from the spokes to the hub, waiting times
for the M/G/s model are lower than those obtained by SV, but the difference
diminishes as the number of vehicles increases. One-way trip times are set to
five minutes. The M/G/s curve is computed using simulation; each point is
the average of five runs of 0.5 million requests. For the SV curve, nE = 30,
nR = 100, and each point is the average of five runs of fifty thousand requests
each.

73

3.2.1 The Vehicle Passenger Graph

In Chapter 2, the EVR problem was described in terms of vehicles moving

between stations. In what follows, however, it will be more convenient to

think about vehicles moving between requests. Let the vehicle-request graph,

G, be a directed, weighted graph with node set K∪R∪{s}, where R is a set of

request nodes, K is a set of vehicle nodes, and s is a special vehicle sink node.

Each vehicle begins at its vehicle node, visits zero or more request nodes, and

then terminates at the sink node. The sink node is just a technicality; it does

not correspond to anything physical. The edge set is

E = {(u, v) : u ∈ K ∪R, v ∈ R ∪ {s}, u 6= v}

and the edge weights are delays, defined to encode the structure of the orig-

inal PRT network, as follows. Following the notation from Section 1.2, let

t(i, j) be the quickest-path travel time from station i to station j, with the

convention that t(i, j) = 0 if i = j. For each request u ∈ R, let iu, ju and eu

denote its origin station, destination station and time of receipt, respectively.

We will assume that the first request is received at time 0. The vehicles may

initially be idle at stations, or they may still be serving passengers that ar-

rived in the past, before the set of requests being considered now. For each

vehicle u ∈ K, define constants ju and eu so that vehicle u first becomes idle

at station ju at time eu; if the vehicle is initially idle, then eu = 0. The edge

weights

wuv =

eu + t(ju, iv) u ∈ K, v ∈ R

t(iu, ju) + t(ju, iv) u, v ∈ R, u 6= v

0 u ∈ K ∪R, v = s

are defined to include both occupied travel time (eu if u ∈ K or t(iu, ju) if

u ∈ R) and empty travel time. Note that if ju = iv, then there is no empty

vehicle trip required, and t(ju, iv) = 0. Also, since the t(i, j) satisfy the

triangle inequality (1.1), so do the edge weights. An example construction is

given in Figure 3.3.

74

Figure 3.3: An example of a vehicle-request graph. The PRT network (a)
includes stations, merges and diverges, but only quickest-path times are im-
portant for the vehicle-request graph. The edge weights are travel times, in
minutes. There are two vehicles, k1 and k2; k1 will arrive in station A in
one minute, and k2 is idle at station C. A complete list of requests (b) is
provided, including times of receipt, origins and destinations; here there are
three requests. The resulting vehicle-request graph (c) has a node for each
vehicle and each request, and a sink node, s. Edge weights correspond to
vehicle travel times. Suppose that, for example, vehicle k1 serves requests
r0, r1 and r2, in that order. First, it finishes its current trip to station A,
which takes 1 minute; then it arrives at A, which is r0’s origin. So, the edge
(k1, r0) has weight 1. It then serves r0 by moving from A to B, which takes
3 minutes, and moves empty for 2 minutes from r0’s destination, B, to r1’s
origin, C; so, edge (r0, r1) has weight 2+3 = 5. This repeats for r2, and then
the vehicle terminates at the sink node.

75

3.2.2 Arc Flow Formulation

For each edge (u, v) ∈ E, let xuv be a binary variable; xuv = 1 signifies that

a vehicle traverses edge (u, v), and xuv = 0 signifies that no vehicle traverses

that edge. For example, if u and v are request nodes, then xuv = 1 means

that a vehicle serves request u and then proceeds to pick up request v. For

each request u, let the variable tu be the time at which a vehicle picks up

that request; this is the time at which the vehicle departs from the request’s

origin station. It is also convenient to define constants tu = 0 for u ∈ K.

The Static EVR problem can then be defined as follows.

min
∑
u∈R

tu (3.12)

s.t.
∑

v:(u,v)∈E

xuv = 1 ∀ u ∈ K ∪R (3.13)

∑
u:(u,v)∈E

xuv = 1 ∀ v ∈ R (3.14)

∑
u:(u,v)∈E

xus = |K| (3.15)

xuv = 1 =⇒ tu + wuv ≤ tv ∀ (u, v) ∈ E, v 6= s (3.16)

eu ≤ tu ∀ u ∈ R (3.17)

tu ≤ tv ∀ (u, v) ∈ EFCFS (3.18)

xuv ∈ {0, 1} ∀ (u, v) ∈ E (3.19)

Request u’s waiting time is tu − eu, so the objective (3.12) is equivalent

to minimising the total waiting time, since the eu are constants, and hence

the average waiting time, since all requests are served. Constraints (3.13),

(3.14) and (3.15) ensure that each request is served by exactly one vehicle,

and that each vehicle terminates at the sink node. (Constraint (3.15) is

actually redundant.) The vehicle trips can be determined by starting from

each vehicle node and following the arcs (u, v) for which xuv = 1, through zero

or requests, to the sink node. Constraints (3.16) ensure that pickup times are

updated according to the vehicle flows. These are conditional constraints: if

a vehicle serves request u and then request v (that is, if xuv = 1), the vehicle

76

must serve u and then move from his destination to v’s origin before picking

up v. Constraints (3.17) are one-sided time window constraints that ensure

that request u is not picked up before it is received, at eu. Constraints (3.18)

are precedence constraints that ensure that requests with the same origin

station are served in first-come-first-served order, with

EFCFS = {(u, v) : u ∈ R, v ∈ R, iu = iv, eu < ev} .

3.2.3 Related Problems

The Static EVR problem is related to several well-known problems. It is

helpful to begin with the Travelling Salesman Problem (TSP) and the Trav-

elling Repairman Problem (TRP). In the TSP, a salesman wishes to visit

his potential customers with the least possible time spent travelling between

them; in the TRP, a repairman wishes instead to minimise the time that

his customers spend waiting for service. In the Static EVR problem, the

salesman (or repairman) is a vehicle, and the customers are requests. This

section explores these connections in more detail; this gives insights into how

the problem may be solved, and its complexity.

The Travelling Salesman Problem

The TSP, and many variations upon it, have been studied extensively; see

Applegate et al. (1998) for a recent general survey. In the classical TSP,

there is a single vehicle, all requests are received at time 0, and the travel

times between requests are metric (they satisfy the triangle inequality) and

symmetric (wuv = wvu). The vehicle’s route must be a cycle that includes

all of the requests; such a cycle is called a tour. The objective is to find a

tour that minimises total vehicle travel time; this is equivalent to minimising

empty vehicle travel time, because occupied vehicle travel times are fixed.

Also, there are no time window or precedence constraints (3.17) or (3.18).

When wuv need not equal wvu, the problem is known as an Asymmetric TSP

(ATSP). Under these assumptions, and adopting the convention that xuv = 0

77

and wuv = 0 if u = v, the following is a formulation of the ATSP.

min
∑
u,v∈R

wuvxuv (3.20)

s.t.
∑
v∈R

xuv = 1 ∀ u ∈ R (3.21)∑
u∈R

xuv = 1 ∀ v ∈ R (3.22)∑
u∈C

∑
v∈C

xuv ≤ |C| − 1 ∀ C ⊂ R,C 6= ∅ (3.23)

xuv ∈ {0, 1} ∀ u, v ∈ R (3.24)

This is known as the Dantzig-Fulkerson-Johnson formulation (Dantzig et al.,

1954), which has been used to obtain exact solutions to very large ATSP

(and TSP) instances (Miller and Pekny, 1991; Applegate et al., 2003). The

objective (3.20) and constraints (3.21) and (3.22) comprise an Assignment

Problem (AP) of requests to requests; that is, each request is assigned to

the next request to be served. The AP is a special case of the minimum

cost network flow problem, and it can be solved efficiently using standard

techniques (Bertsimas and Tsitsiklis, 1997), but the selected edges may form

cycles that do not include all of the requests in R; these cycles are called sub-

tours. Constraints (3.23) are subtour elimination constraints (SECs). They

assert that any proper subset of n passengers must be connected by at most

n−1 edges; adding another edge would create a subtour. There are exponen-

tially many SECs in this formulation, so it is impractical to consider them

all at once. Instead, constraints of this type are generated only when needed,

using a branch-and-cut procedure. A recent survey and comparative analysis

of ATSP formulations is given in Oncan et al. (2009).

Some formulations eliminate subtours using only polynomially many con-

straints but also extra variables. One of the oldest of these is the Miller-

Tucker-Zemlin formulation (Miller et al., 1960), in which constraints (3.23)

are replaced by

pu − pv + |R|xuv ≤ |R| − 1 ∀ u, v ∈ R

78

where the continuous variables pu are called potentials. These constraints

eliminate subtours because the potentials increase along any path: when

xuv = 1, these constraints require that pv ≥ pu+1. This formulation requires

O(|R|) extra continuous variables and O(|R|2) constraints. The conditional

constraints (3.16) on the pickup times in the Static EVR problem eliminate

subtours using the same principle, because they force the passenger pickup

times to increase along any path.

The TSP and the ATSP are both NP-hard, and much work has been done

on approximation algorithms. Whereas constant-factor polynomial time ap-

proximations for the metric symmetric TSP are known, the best known ap-

proximations for the metric ATSP have only an O(log n) guarantee (Kaplan

et al., 2005); in this sense, the ATSP is harder. The classical TSP requires

that the vehicle return to its starting position at the end of its tour; if this

requirement is relaxed, the problem is known as the Hamiltonian Path Prob-

lem, which is also NP-hard. In the asymmetric case, the problem is often

called the Asymmetric Travelling Salesman Path Problem (ATSPP), which

has an O(log n) approximation algorithm (Chekuri and Pál, 2006).

The Travelling Repairman Problem

The classical TRP is just like the TSP, except that the objective is to min-

imise the sum of the requests’ pickup times, instead of the vehicle’s travel

time. In this sense, the TRP is customer-oriented, and the TSP is server-

oriented. The TRP is also known as the Delivery Man Problem (Fischetti

et al., 1993), the Travelling Deliveryman Problem (Mendez-Diaz et al., 2008),

and the Minimum Latency Problem (Blum et al., 1994). Like the TSP, the

MLP is NP-hard, and much work has been done on approximations (Archer

et al., 2008). Exact approaches have been much less successful for the MLP

than for the TSP; random instances with 30–40 customers are considered

large (Mendez-Diaz et al., 2008; Sarubbi and Luna, 2007). Variants in which

the costs are asymmetric and the server is not required to return to the start

have also been studied (Friggstad et al., 2010).

79

Vehicle Routing Problems

Vehicle Routing Problems (VRPs) are variants of the TSP that often feature

multiple vehicles, vehicle capacity constraints and time windows. The classi-

cal VRP features a fleet of vehicles (say, tanker trucks) that deliver a single

commodity (gasoline) from a single depot (a refinery) to several customers

(gas stations) (Dantzig and Ramser, 1959). When the vehicle has a fixed

capacity (volume or weight limit), the problem is said to be capacitated. See

Toth and Vigo (2002) and Golden et al. (2008) for recent surveys.

Pickup and Delivery Problems (PDPs) are VRPs in which the goods (or

passengers) to be transported have particular origins and destinations. A

typical example is an urban courier service, in which one or more vans pick

up and deliver parcels. Each parcel must be picked up from its origin and

delivered to its destination by the same van, and each van usually has a

finite capacity. See Berbeglia et al. (2007, 2010) for recent surveys. A similar

problem arises in paratransit, where the vehicle is a bus and the parcels

are replaced by passengers; this is called the Dial-A-Ride Problem (DARP).

An important feature of the DARP is that each vehicle can carry several

passengers at once, each of whom may have a different destination. We have

assumed that each vehicle serves only one request at a time; problems of this

kind are sometimes called truckload problems (Powell, 1996).

It is often the case that requests can only be picked up within set time

windows. The window is defined by an early time and a late time; if only one

is specified, the time window said to be one-sided. The early time is usually

interpreted as a hard constraint, but the late time may be a soft constraint;

that is, the objective function may includes terms that penalise solutions in

which requests are picked up after their late time. This is one way in which

latency can be incorporated into the objective function of a VRP.

Summary

In TSP/VRP terms, the salient features of the Static EVR problem are as

follows.

80

1. The travel times are asymmetric (wuv may not equal wvu) and metric

(they satisfy the triangle inequality).

2. There are multiple vehicles, which must collectively serve all of the

requests; this is common in vehicle routing problems, and there is also

a literature on multi-vehicle TSPs (Bektas, 2006).

3. Each vehicle may have a different starting point. When there are mul-

tiple vehicles, it is often assumed that all vehicles begin at a single

depot ; the Static EVR problem can be seen as a multi-depot problem.

4. Vehicles do not have to return to their starting points at the end of

their tour. That is, a path is required, rather than a cycle. This is a

minor difference when travel times are asymmetric, because zero-time

edges can be added from each request to any starting point.

5. Requests have one-sided time window constraints (3.17), because re-

quest u cannot be picked up before it is received, at eu; if a vehicle

reaches a request node u before eu then the vehicle will wait for u to

arrive.

6. Requests received at the same origin are subject to precedence con-

straints (3.18).

7. Latency is part of the objective function. Here we have defined the

static EVR problem in terms of latency only, but terms for (empty)

vehicle travel time could also be added.

The static EVR problem is NP-hard, because it generalises the minimum

latency version of the ATSPP, which is NP-hard (Nagarajan and Ravi, 2008).

In particular, the static EVR problem is a minimum latency ATSPP when

the following three conditions hold.

1. There is one vehicle.

2. All requests are received at the start; that is, eu = 0 for all requests,

so the time window constraints (3.17) are not active. This is approxi-

mately true when the demand intensity is very high.

81

3. Every request is from a different station, so the precedence constraints

(3.18) are not active. This is approximately true when the underlying

PRT system has a large number of stations.

This means that there are some very hard instances of the static EVR prob-

lem, but it does not imply that all instances are hard. In particular, when

the demand intensity is low and the number of stations is small, constraints

(3.17) and (3.18) largely prescribe the order in which requests should be

served. It may be possible to exploit these constraints to obtain provably op-

timal solutions for usefully large instances, particularly at low-to-moderate

demand intensity. So far, only very small instances have been solved exactly

using standard techniques (mixed integer linear programming), as described

in the next section.

3.2.4 Exact Solution as a Mixed Integer LP

To solve (3.12) with standard mixed integer linear programming methods,

the conditional constraints (3.16) must be linearised. The standard way to

do this is the “big-M trick” (Williams, 1999): replace constraints (3.16) with

tu + wuv − tv +Muvxuv ≤Muv ∀ u ∈ R, v ∈ R, u 6= v (3.25)

where the constant Muv is an upper bound on tu +wuv − tv. When xuv = 1,

this constraint is equivalent to the original constraint; when xuv = 0, the

constraint is trivially satisfied, because Muv was chosen to be an upper bound

on the remaining terms. Here, Muv = tmax−ev where tmax is an upper bound

on tu + wuv, namely

tmax = max
u∈R

eu + max
u∈K,v∈R

wuv +
∑
u∈R

(
max

v:(u,v)∈E
wuv

)
. (3.26)

This is obtained by assuming that one vehicle serves all of the passengers, that

it waits until all passengers have arrived before moving, and that it chooses

the worst link on each stage of its journey. When u ∈ K, the constraints can

82

be linearised without big-Ms, as

wuvxuv ≤ tv ∀ u ∈ K, v ∈ R, (3.27)

because these are trivial constraints on tv when xuv = 0.

It is well-known that LP relaxations of MILPs with big-M constraints

tend to give weak lower bounds, which requires that more nodes be examined

in the branch-and-bound search. It is possible to reformulate the problem

to avoid the big-M constraints by using a formulation for the Travelling

Repairman Problem that was proposed by van Eijl (1995). It uses more

continuous variables, but the big-M constraints are not required. For each

request u, we replace the pickup time variable tu with new variables τuv for

each v with (u, v) ∈ E. It is also convenient to define constants τuv = 0 for

u ∈ K. Constraints (3.16) can then be replaced with∑
u:(u,v)∈E

(τuv + wuvxuv) ≤
∑

w:(v,w)∈E

τvw ∀ v ∈ R (3.28)

0 ≤ τuv ≤ tmaxxuv ∀ u, v ∈ R (3.29)

These constraints, together with the integrality constraints (3.19) on the xuv,

ensure that τuv is the pickup time at node u if xuv = 1, and that τuv = 0 if

xuv = 0. In other words, the new variables are related to the old variables

by the identity τuv = tuxuv. Constraints (3.17) and (3.18) and the objective

(3.12) can then be rewritten in terms of the new variables using the identity

tu = tu
∑

v:(u,v)∈E

xuv =
∑

v:(u,v)∈E

tuxuv =
∑

v:(u,v)∈E

τuv, (3.30)

where the first equality follows from constraints (3.13).

It is worth noting that constraints (3.28) could also have been written

without the summation on the left hand side, by instead creating a separate

constraint for each u, like in (3.16). When the xuv are restricted to {0, 1},
there is no difference, but when the xuv are continuous, the form (3.28) with

the summation is stronger.

83

A further refinement is to remove some arcs from the vehicle-request

graph by using the precedence constraints. In particular, if requests u and v

have the same origin station, and u arrives before v, a vehicle clearly cannot

move from v to u. So, the arcs

{(v, u) : u ∈ R, v ∈ R, iu = iv, eu ≤ ev} (3.31)

can be removed, which is significant when the number of stations with outgo-

ing demand is small. Note that removing these arcs does not make the FCFS

constraints (3.18) redundant, unless there is only one vehicle. Time window

constraints often rule out some routes in advance (Dumas et al., 1991, 1995),

but with multiple vehicles and only one-sided time windows (3.17), this does

not appear to be the case.

This MILP formulation was used to exactly solve very small instances

(less than ten requests) with the open source GNU Linear Programming

Kit (GLPK) solver (version 4.43) for validation purposes. However, tests

with somewhat larger instances (forty requests) failed to terminate after sev-

eral hours, even when the heuristic in the next section was used to give a

reasonable initial solution. A commercial MILP solver from the Numerical

Algorithms Group (NAG) was also used, but its performance was not signifi-

cantly different from that of GLPK. Better results might have been obtained

from the industry-standard iLOG CPLEX solver; this was not attempted.

However, to obtain meaningful average waiting times for a given scenario,

instances with thousands of requests would have to be solved. It may be

possible to obtain exact solutions for such instances, but it appears that a

more sophisticated approach is required. Here we will use the heuristic de-

scribed in the next section, rather than attempting to obtain exact solutions.

3.2.5 Approximate Solution: Static Nearest Neighbours

(SNN)

The following heuristic, which we call Static Nearest Neighbours (SNN),

is a novel modification to the BWNN heuristic (Section 2.2.1) that takes

84

advantage of known future requests. For each request r ∈ R, in ascending

order by er, SNN chooses the vehicle

k∗ = argmin
k

[max(0, ak + t(dk, ir)− er)] (3.32)

that minimises the waiting time for request r. For vehicles with ak ≥ er,

the objective values (2.15) for BWNN and (3.32) for SNN are the same.

However, if a vehicle has ak < er, SNN allows the vehicle to start its empty

trip before er, whereas BWNN does not. In this sense, SNN moves empty

vehicles retroactively, which can substantially reduce waiting times.

Ties in (3.32) are common, because there are often several vehicles that

could reach ir before the request at er, and all such vehicles would give

zero waiting time. To break ties, we first try to select the vehicle with the

minimum empty travel time t(dk, ir). However, if (for example) there is more

than one vehicle inbound to station ir, they will all have zero empty time

and so a further tie-breaking rule is required. To this end, we select the

vehicle with latest arrival time ak+ t(dk, ir) at ir. The idea is that this choice

allows better moves as one progresses through the list of requests, because

the vehicles that arrive earlier at ir have more flexibility to serve requests

further down the list. Finally, if these measures are equal, we break ties by

choosing the minimum such vehicle index k.

3.3 Discussion

In this chapter, we have developed two benchmarks for passenger waiting

time: (i) the M/G/s queueing model, and (ii) the approximate solution of

static EVR problems using SNN. Figure 3.4 compares these two benchmarks

and the BWNN algorithm (Section 2.2.1) on the Corby and Grid scenarios.

Both benchmarks predict near-zero mean waiting time for intensity less than

roughly 0.8. Above intensity 0.8, the SNN benchmark predicts higher waiting

times than the M/G/s benchmark. This may be due to the suboptimality of

the SNN heuristic, or it may be that the mean waiting times predicted by the

M/G/s queueing model are not achievable in practice; this is not currently

85

intensity

m
ea

n
re

qu
es

t w
ai

tin
g

tim
e

(s
)

0

60

120

180

240

300

360
Corby

(a)

0.2 0.4 0.6 0.8 1.0

Grid

(b)

0.2 0.4 0.6 0.8 1.0

algorithm

BWNN SNN M/G/s

Figure 3.4: Baseline results for the Corby and Grid scenarios. The gap
between the mean waiting times obtained by the reactive BWNN algorithm
and the benchmarks indicates the potential for reducing mean waiting times
by moving vehicles proactively. Each point on the M/G/s curve is the average
of five runs of 0.5 million requests each. Each point on the SNN and BWNN
curve is the average of five runs of fifty thousand requests each.

known.

Figure 3.4 also shows that there is a large gap between the mean waiting

times obtained by the BWNN algorithm and the benchmarks, except at very

high intensities. For example, the mean waiting time obtained by the BWNN

algorithm on the Corby network at intensity 0.8 is roughly six minutes, but

both benchmarks predict zero waiting time. This gap quantifies the possible

reduction in waiting times that might be achieved by moving vehicles proac-

tively, as the algorithms developed in the next chapter will do. For simplicity,

we will compare the results only to the SNN benchmark, because no mean

waiting times below this benchmark have been obtained in practice.

86

Chapter 4

New Proactive EVR

Algorithms

This chapter introduces two new EVR algorithms, here called Sampling and

Voting (SV) and Dynamic Transportation Problem (DTP), that move idle

vehicles proactively, in anticipation of future requests. These algorithms are

formulated as extensions to the BWNN algorithm (Section 2.2.1); BWNN is

itself a reactive algorithm, meaning that it moves vehicles only in response to

requests that have already been received. The main challenge for proactive

EVR algorithms is that the details of individual future requests are not known

exactly; only the statistics of future requests are known. In particular, here

it is assumed that the mean request rates are known for each pair of stations

(that is, that the demand matrix is known).

The SV algorithm works by directly generating an ensemble of possible

sequences of future requests from the demand matrix over a given finite

horizon. For each sequence, together with the current state of the system,

the problem of finding a plan of vehicle movements that minimises total

passenger waiting time is an instance of the static EVR problem (Section 3.2).

In SV, each such problem instance is solved approximately using the SNN

heuristic (Section 3.2.5), and each solution suggests a plan of empty vehicle

movements. Features of these plans that are common across the ensemble

suggest which empty vehicles should actually be moved. SV identifies these

87

features using a voting system, in which each solution casts one ‘vote’ on

which action to actually take.

The SV algorithm is motivated by similar approaches for dynamic vehicle

routing problems (dynamic VRPs). The majority of vehicle routing literature

is on static problems (Berbeglia et al., 2007), in which perfect information

is available about all of the requests to be served. The usual context is that

customers call in requests one or more days in advance, and the problem is

to plan routes each evening for the following day; this means that all of the

requests are known when planning. However, there are several recent stud-

ies (Cordeau et al., 2006; Berbeglia et al., 2010) on dynamic and stochastic

problems, in which some fraction of the requests are for ‘same day’ service,

and statistical distributions for these same day requests are available from

historical data. Sampling approaches similar to that used here have been

successfully applied to several such dynamic VRP variants related to the

EVR problem (Yang et al., 2004; Bent and Van Hentenryck, 2004; Hvattum

et al., 2006); these problems are partially dynamic (many requests are known

in advance), or some advance notice is given for same day requests. Other

heuristics for fully dynamic problems have also been proposed (Bertsimas

and Levi, 1996; Swihart and Papastavrou, 1999). However, none of these

problems is an exact match for the EVR problem.

Whereas the SV algorithm is based on ideas from the vehicle routing

literature, the DTP algorithm builds on ideas from the PRT literature. It

works by setting a target for the number of vehicles to be idle at, or inbound

to, each station. Vehicles at stations with surpluses of vehicles (relative to

their targets) can then be sent to stations with deficits. The problem of

satisfying the targets with minimum empty vehicle movement is a classical

transportation problem (Bertsimas and Tsitsiklis, 1997, ch. 7). The idea

of maintaining a target number of vehicles at each station is common in

the PRT literature (Andréasson, 1998; Anderson, 1998). The decisions on

which vehicles to move are typically made according to rules that can be

viewed as approximation algorithms for the transportation problem. For

example, when a station has a deficit, it may call the nearest idle vehicle at

a station with a deficit not greater than its own (Andréasson, 1998). The

88

transportation problem and related minimum-cost network flow problems

appear in many related contexts; for example, Andréasson (2003) formulates

a different transportation problem that can be used to reroute PRT vehicles

while they are moving, and Powell (1987) formulates a network flow problem

for the dynamic allocation of trucks.

The principle of proactive empty vehicle movement also applies to con-

ventional taxis. Most existing work on taxi dispatch focuses on reactive

algorithms (Horn, 2002a,b; Bell and Wong, 2005; Seow et al., 2010) and re-

lated operational challenges such as travel time estimation (Lee et al., 2004)

and the handling of both advanced bookings and immediate requests (Horn,

2002a; Wang et al., 2009). Approaches to proactive movement include ran-

dom roaming (Lee et al., 2004), the go to hotspot heuristics of (Li, 2006),

and the rank homing heuristics of (Horn, 2002a). A heuristic similar to that

of Horn (2002a) is included in the simulation tests in Section 4.3. First,

sections 4.1 and 4.2 describe the SV and DTP algorithms in more detail.

The SV algorithm was introduced in Lees-Miller and Wilson (2011). The

DTP algorithm was introduced in Lees-Miller and Wilson (2012). The eval-

uation of SV and DTP in this chapter includes additional simulation results

from a separate set of test scenarios (see Section 2.3); evaluation on a separate

test set increases confidence in the obtained conclusions.

4.1 Sampling and Voting (SV)

The SV algorithm is defined as follows. When a new request is received,

a vehicle is immediately assigned using BWNN (2.15). Immediately after

a vehicle has been assigned to serve the request, SV may then move idle

vehicles proactively. To decide which idle vehicles to move, an ensemble

of nE possible sequences of nR future requests each is generated from the

demand matrix. Each sequence in the ensemble, together with the current

state of the system, defines an instance of the static EVR problem. Each

of these instances is solved approximately using the SNN algorithm, and

each resulting solution prescribes a sequence of empty vehicle trips, which

constitutes ‘advice’ on which idle vehicles the system should actually move.

89

However, because each solution is for a different sequence of requests, they

may offer conflicting advice.

To determine which action should actually be taken, a voting system is

used. The system adopted here is that at most one idle vehicle at each station

may be moved. So, each solution casts one vote on the best destination (as

defined below) for an idle vehicle at each station i with idle vehicles; note

that it may vote for i as the best destination, which means that it votes not

to move any idle vehicles from i at this decision point. If the destination

with the most votes is not i, an idle vehicle at i is selected and moved.

The destinations to vote for are determined as follows. The solution for

each static EVR instance maps each input request to an empty vehicle trip,

so each solution yields an ordered sequence of exactly nR empty trips. Empty

trip p ∈ {1, . . . , nR} is described by the tuple (ip, jp, kp), where kp ∈ K is the

index of the vehicle used for trip p, and ip ∈ S and jp ∈ S are the stations

at which the empty trip begins and ends, respectively. Trips with ip = jp

are trivial, in that no actual empty vehicle movement is required. For each

station i with idle vehicles, let Ki = {k ∈ K : dk = i and ak ≤ t} be the set

of vehicles that are currently idle at i, and hence eligible to be moved at the

current decision point. The following rules then determine the destination

to vote for.

(i) vote for i if all vehicles in Ki were used for trips p with jp = i, or

(ii) vote for jp for the first trip p with kp ∈ Ki and jp 6= i, if one exists, or

(iii) vote for jp for the first trip p with ip = i and jp 6= i, if one exists, or

(iv) vote for i.

Rule (i) votes to leave all idle vehicles at i if they were all needed there. If an

idle vehicle at i was moved to another station, rule (ii) votes to perform this

trip. If none of the idle vehicles were moved, as is common when demand

is light, rule (iii) looks at all trips for a hint at where it should send one of

these idle vehicles. If there were no trips from station i, rule (iv) leaves them

where they are.

90

The concept of planning with an ensemble is very general, and many

variants on the SV algorithm are possible, such as (a) using algorithms other

than BWNN and SNN to assign vehicles to requests; (b) running the en-

semble generation and voting system at different decision points; (c) using

different voting systems; (d) using different rules to choose destinations from

each sequence in the ensemble. The SV algorithm described here gave the

lowest mean passenger waiting times among several such variants that were

evaluated on the training scenarios.

4.2 Dynamic Transportation Problem (DTP)

The DTP algorithm is defined as follows. For each station i, let θi be the

target number of inbound vehicles at station i; the θi are parameters that

must be set, either manually or using an algorithm. At a given time t, let bi

be the number of vehicles that are inbound to i (that is, with dk = i), and

let li be the number of vehicles that are idle at i (that is, with dk = i and

ak ≤ t); note that bi ≥ li ≥ 0. Define ui = min{bi − θi, li} as the surplus of

vehicles at station i. If ui > 0, station i has a surplus of inbound vehicles,

but only li of these are currently idle, so at most li vehicles can be moved

now. If ui < 0, station i has a deficit of inbound vehicles. In general, the

surpluses and deficits need not balance, so we introduce an extra dummy

node q with uq = −
∑

i ui. Let S ′ = S ∪ {q} and partition S ′ into sets

S+
t = {i ∈ S ′ : ui ≥ 0} and S−t = {i ∈ S ′ : ui < 0}. Note that this partition

may change over time.

For each i ∈ S+
t and each j ∈ S−t , let xij be the number of vehicles to

send from node i to node j, which is to be solved for. If i and j are both

stations, then xij > 0 means that xij vehicles which are currently idle at i are

to move to station j. If either i = q or j = q, then no vehicles are actually

moved, regardless of the value of xij; in other words, a decision to move idle

vehicles from or to the dummy node means that they should be left where

they are until the next decision point. The costs for sending vehicles to or

from the dummy node are zero (define tiq = tqi = 0 for all i ∈ S), because

these vehicles do not actually move. The transportation problem to be solved

91

is then

min
∑
i∈S+

t

∑
j∈S−t

tijxij (4.1)

s.t.
∑
j∈S−t

xij = ui ∀ i ∈ S+
t (4.2)

∑
i∈S+

t

xij = −uj ∀ j ∈ S−t (4.3)

xij ≥ 0 ∀ i ∈ S+
t , j ∈ S−t (4.4)

Constraints (4.2) and (4.3) are flow conservation constraints; they ensure

that the surpluses match the deficits. Constraints (4.4) prevent negative

flows. When the targets θi are integers, there is an optimal solution in which

all of the xij are integers, because the transportation problem is a special case

of the minimum cost network flow problem and the ui are integers (Bertsimas

and Tsitsiklis, 1997). The problem (4.1) is solved exactly with the integer

RELAX IV code (Bertsekas and Tseng, 1988) every time a request is received,

and also every time a vehicle becomes idle.

The targets θi must be chosen to suit the network, demand matrix and

fleet size. In what follows, we let θ be the vector of targets θi for each

i ∈ S, listed in order. The aim is to find a vector θ that minimises the mean

passenger waiting time. We use two metaheuristics for this purpose, namely

simulated annealing and the cross-entropy method.

4.2.1 Setting Targets with Simulated Annealing

Simulated annealing is a well-known local search method (Laarhoven and

Aarts, 1987). Here we use the implementation provided by the GNU Scien-

tific Library (Galassi et al., 2010). The method is iterative. In each iteration,

it replaces the current solution (target vector) with a randomly chosen neigh-

bour solution, with an acceptance probability that depends on the resulting

decrease (or increase) in the energy function (objective function). The ac-

ceptance probability also depends on a global ‘temperature’ parameter that

92

decreases as the search proceeds, according to a cooling schedule. This ter-

minology is motivated by connections with the physical process of annealing

metals.

An initial estimate for the target vector is obtained from the fluid limit

calculations in Chapter 2, namely

θ̂i = round

((∑
j

tji(dji + x∗ji)

)(∑
j dij∑

j(dij + x∗ij)

))
(4.5)

where the x∗ij are obtained from the optimal solution to (2.6), and the function

round(·) denotes rounding to the nearest integer. The first factor is the

number of vehicles that are expected to be inbound to station i on average,

and the second factor is the fraction of vehicles that leave station i occupied.

The rationale for the second factor is that if most of the vehicles leaving

station i are empty, on average, then the station should not attempt to

retain many idle vehicles.

Neighbouring solutions are generated by adding -1, 0 or 1 with equal prob-

ability to each target, and each target is constrained to remain in [0, nK].

The energy function, E(θ), which is to be minimised, is the average pas-

senger waiting time as estimated from a simulation with a given number of

passengers. The cooling schedule and acceptance probabilities are set in the

usual way for an ‘inhomogeneous’ simulated annealing scheme, as follows.

The input parameters are the initial and final temperatures, t0 and t1, the

Boltzmann constant, k, and the temperature decay factor µT . The tempera-

ture is reduced from T to T/µT in each iteration. The probability of moving

from targets θ to θ′ is 1 if E(θ′) < E(θ) and

exp

(
−E(θ′)− E(θ)

kT

)
otherwise. The algorithm stops when T < t1, and the returned target vector

θ∗ is the one with the lowest energy out of all those evaluated in the course

of the search (not necessarily the last one considered).

93

4.2.2 Setting Targets with the Cross-Entropy Method

The treatment here follows de Boer et al. (2005) and Alon et al. (2005).

Let θmax be a positive integer that is an upper bound on the value of any

component of the target vector, such as the fleet size. For each station i ∈ S,

let pix be the probability that θi = x− 1, for x = 1, . . . , θmax + 1, and let P

be the matrix with entries pix. We require that the rows of P sum to one

(that is,
∑

x pix = 1). The pix are all set to (θmax + 1)−1 initially.

In each iteration of the cross-entropy method, a fixed number, M , of

target vectors θ(1), . . . ,θ(M) are drawn from the distribution defined by P.

The mean passenger waiting time score E(θ(l)) for each vector θ(l) is then

estimated by running a simulation of DTP with the corresponding targets.

A fixed proportion, η, of the best target vectors are then used to update the

probabilities for future iterations; in particular, let γ̂ be the η-quantile of the

scores in the sample (that is, if η = 0.1, at least 10% of the scores are less

than γ̂). Based on the sample, the best estimates of the probabilities that

should be used for the next iteration are

p̂ix =

∑M
l=1 I(E(θ(l)) ≤ γ̂)I(θ

(l)
i = x− 1)∑M

l=1 I(E(θ(l)) ≤ γ̂)

where I(·) is an indicator function that is 1 if the given condition is satisfied

and 0 otherwise. The update rule has a fairly simple interpretation: count

how many target vectors gave low mean passenger waiting times relative to

the other target vectors in the sample (as measured by η), and of those count

how many target vectors had their ith component set to x− 1. Dividing the

latter by the former gives the estimate. Because the p̂ix are only estimates, it

is common to update the probabilities for the next iteration using a smooth-

ing factor α, according to

pix ← αp̂ix + (1− α)pix.

The algorithm stops after a fixed number of iterations, or when the vector of

94

most likely targets,

θ∗ =

((
argmax

x
pix

)
− 1

)
i

,

has remained the same for a given number of iterations. This vector of most

likely targets is the output from the cross-entropy search.

4.3 Results

In this section, the proposed algorithms are evaluated in simulation. The

simulations are conducted in the same way as those for BWNN, as described

in Chapter 2.

For comparison, an existing EVR algorithm, here called the Surplus /

Deficit (SD) algorithm, is also evaluated. It is an algorithm for the dynamic

EVR problem that moves vehicles proactively. The general approach in SD

is similar to several other published EVR algorithms (Anderson, 1998); it

is most similar to that of Andréasson (1998). Several variants of SD were

evaluated on the training scenarios; here we describe the one that gave the

lowest mean waiting times. In the SD algorithm, each station i has an

associated call time τi, which is the cumulative average of all previous empty

vehicle trip times to that station. The surplus of vehicles at station i is the

number of inbound vehicles that will arrive within the call time, minus the

expected number of requests over the call time, namely τi
∑

j dij. Like DTP,

SD works by maintaining a target number of vehicles idle at, or inbound to

each station; the difference is that the targets for SD are defined implicitly

by the call times, rather than explicitly as parameters. When a new request

is received, a vehicle is assigned using BWNN. Immediately afterward, SD

may move idle vehicles proactively, as follows. For each station i with idle

vehicles, in descending order by number of idle vehicles, if the surplus of

vehicles at i is greater than or equal to one, an idle vehicle at i is sent to

the nearest station with surplus less than zero (if any). Additionally, when

a vehicle becomes idle at station i, the above actions are taken for station i

only.

95

Figure 4.1a compares the mean waiting times observed for the five heuris-

tics on the Corby system. An important observation is that waiting times

increase rapidly as intensity approaches one, regardless of which EVR algo-

rithm is used, as is expected based on the definition of intensity (2.8). In

practice, we are most interested in the system’s performance at intensities

from around 0.7 to around 0.9, because in this range the system is well-

utilised, but acceptably low passenger waiting times may still be obtained.

At intensity 0.8, for example, mean waiting times are 355s for BWNN, 41s for

SD, 20s for DTP, and 15s for SV. By moving vehicles proactively, SV reduces

mean waiting times by 96% from the BWNN baseline. The relative reduction

decreases as intensity increases, however, and in fact the SV, DTP and SD

algorithms become increasingly similar to the BWNN algorithm at higher

intensities, because there are fewer idle vehicles to redistribute. Figure 4.1c

shows that the reduction in passenger waiting times comes from a modest

increase in the average number of moving empty vehicles, or equivalently in

empty vehicle travel time. The largest increase occurs at intensity 0.91, and

this is from 47 concurrently moving empty vehicles with BWNN to 51 with

SV (out of 200 vehicles). With perfect information about future arrivals,

SNN finds routes with average waiting times less than those for the dynamic

case, as expected; at intensity 0.8, the mean waiting time for SNN is 3s. Only

mean waiting times are reported, but the ranking of the five algorithms is

the same at the 90th percentile of the waiting time distribution; at intensity

0.8, 90% of passengers wait less than 51s with SV, 76s with DTP, and 106s

with SD. Results for the Grid network are qualitatively similar, as shown in

Figures 4.1b and 4.1d.

The parameters used to choose the targets for the DTP algorithm are

given in Table 4.1 on page 98. The DTP results shown in Figure 4.1 are

those with the minimum mean waiting time found by either the cross-entropy

method or simulated annealing with the ‘fast’ cooling scheme defined in Table

4.1. The mean waiting time for each solution is estimated with a simulation

of 20000 requests. Five independent runs of each search algorithm are per-

formed for each DTP point in Figure 4.1.

Figure 4.2 compares the mean waiting times obtained by simulated an-

96

nealing with the ‘fast’ cooling schedule to those obtained with a ‘slow’ sched-

ule, as defined in Table 4.1. The parameters for the ‘slow’ schedule are chosen

so that the simulated annealing search performs roughly the same number of

simulations as the cross-entropy method, namely about 85 thousand simula-

tions per run. The results are mixed; in the Grid scenario, the slow schedule

produces lower mean waiting times than the fast schedule, but the opposite

is true in the Corby scenario. Overall, the lowest mean waiting times (the

solid line in Figure 4.2) were sometimes produced by simulated annealing

but more often by the cross-entropy method. However, many other cooling

schedules are possible, some of which are more sophisticated (Laarhoven and

Aarts, 1987) than those used here, and these might produce better results.

Computation times for the BWNN, SNN and SD algorithms are negligi-

ble. Computation times for SV are larger, but SV is still fast enough for real

time use with the case study networks: the mean computing time per pas-

senger request for the SV results in Figure 4.1 is 0.04s with the hardware and

SV implementation used for testing (user plus system time on a 2.0GHz Intel

Xeon E5405 with g++ 4.1.2 and -O3). Execution times may of course vary

depending on the hardware used and the implementation of the algorithm.

The largest system so far tested with SV has 60 stations and 600 vehicles.

When nE = 50 sequences and nR = 750 generated requests per sequence,

SV produces lower waiting times than the SD and BWNN methods on an

AM peak demand matrix for this system, and it uses 1.2s of computing time

per passenger request. For this scenario, the demand at intensity one is 5050

requests/hour, or 0.7s per request, so the sequential SV algorithm used for

testing is not fast enough for real time use at high intensity, in this case.

However, SV is easy to parallelise, because each of the nE sequences can be

generated and processed independently; for example, real elapsed time per

request could in this case be reduced to near 0.6s if two processors were used.

The main limit on the scalability of the SV algorithm is thus the time to pro-

cess a single sequence. The SNN minimisation (3.32) takes O(nK) time, so

processing a single sequence takes O(nKnR) time.

The computation times for DTP are small once the targets (θ) are set

(4 × 10−5s per request on the training scenarios). However, a potentially

97

Parameter \ Cooling Schedule fast slow
initial temperature (t0) 10 20
temperature decay factor (µ) 1.01 1.001
final temperature (t1) 0.1 0.004
moves per iteration 1 10 10
Boltzmann constant (k) 1 1
simulations per run 4.6× 103 8.5× 104

(a) simulated annealing

Parameter \ Scenario Corby Grid
maximum target (θmax) 50 50
sample size (M) 1500 2400
rarity parameter (η) 0.1 0.1
smoothing parameter (α) 0.5 0.5
maximum number of iterations 50 50
convergence test iterations 2 5 5
mean simulations per run 8.4× 104

(b) cross-entropy method

Table 4.1: Parameters for the search for DTP targets with (a) simulated
annealing and (b) the cross-entropy method on the training scenarios. The
same simulated annealing parameters are used for both the Grid and Corby
scenarios, but two different cooling schedules are used (‘fast’ and ‘slow’).

1 Moves to this many neighbouring solutions are considered at each fixed
temperature.
2 The cross-entropy search terminates if the maximum likelihood solution
does not change for this number of iterations.

large amount of off-line computation is required to find targets that give

low waiting times. The off-line computation times for the DTP results in

Figure 4.1 are around 100h per point (including both simulated annealing

with the ‘fast’ cooling schedule and cross-entropy), which is impractically

long. However, there are many possible improvements to the target search

method used here. For example, rather than treating each demand matrix

(that is, each point in Figure 4.1) separately, targets obtained for one demand

matrix could be used as the initial targets for similar demand matrices. This

is a topic for future work.

98

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
5
0

2
5
0

3
5
0

Corby Network

m
e
a
n
 w

a
it
 t
im

e
 (

s
e
c
o
n
d
s
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
5
0

2
5
0

3
5
0

Grid Network

(b)

BWNN
SNN
DTP
SV
SD

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2
0

3
0

4
0

5
0

6
0

7
0

8
0

intensity

m
e
a
n
 %

 m
o
v
in

g
 e

m
p
ty

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2
0

3
0

4
0

5
0

6
0

7
0

8
0

intensity

(d)

Figure 4.1: Mean passenger waiting times (a, b) and empty vehicle use (c,
d) for the Grid and Corby scenarios for the five algorithms. The SV and
DTP algorithms move idle vehicles in anticipation of future requests, which
reduces waiting times significantly below the BWNN baseline; they also re-
duce waiting times below those obtained with the SD algorithm from the
literature. The SNN algorithm operates with perfect information about fu-
ture requests in order to estimate how much further waiting times might be
reduced. Here there are nE = 50 sequences, each with nR = 300 requests
for SV. The targets used for the DTP algorithm at each intensity are those
that produced the lowest mean waiting time at that intensity, whether they
were found by simulated annealing (with the ‘fast’ cooling schedule) or cross-
entropy. Each point is averaged over 10 independent runs of 50000 simulated
passengers each.

99

intensity

m
ea

n
re

qu
es

t w
ai

tin
g

tim
e

(s
)

0

60

120

180

240
Corby

(a)

0.2 0.4 0.6 0.8 1.0

Grid

(b)

0.2 0.4 0.6 0.8 1.0

cooling schedule

fast slow

Figure 4.2: Mean waiting times for the DTP heuristic with targets obtained
by simulated annealing (SA) on the Corby and Grid scenarios. Each point
marks the lowest mean passenger waiting times obtained for one run of one
of the SA cooling schedules defined in Table 4.1(a). The black lines mark the
lowest mean passenger waiting times obtained by DTP using targets from any
method (simulated annealing or cross entropy). The ‘slow’ cooling schedule
was evaluated only for intensities above 0.6.

100

Scenario nE nR θmax M
T1 50 1000 100 1500
T2 50 300 50 1800
T3 50 300 50 1800
T4 50 1000 50 1400
T5 50 300 50 1400
T6 50 300 50 1300

Table 4.2: Parameters for evaluation on the test scenarios. The nE and nR
parameters are used in the SV algorithm. The θmax and M parameters are
used in the cross-entropy search for DTP targets; also, the rarity parameter
is 0.1; the probability update smoothing factor is 0.5; the maximum number
of allowed iterations is 20 for intensities less than 0.5 and 40 for the rest;
there are 10000 requests per evaluation.

4.3.1 Results on the Test Scenarios

The algorithms have also been evaluated on a separate set of test scenarios

(see Section 2.3). Figures 4.3 and 4.4 show the mean passenger waiting

times and empty vehicle use for the test scenarios. The parameters used

are summarised in Table 4.2; the DTP targets are set using only the cross-

entropy method. Again considering performance for intensities between 0.7

and 0.9, DTP gives equal or lower mean waiting times than SD in all six test

scenarios, and SV gives equal or lower mean waiting times than SD in five

out of six test scenarios; the exception is T1, for which SV produces lower

waiting times only for very high intensities (above 0.85). Empty vehicle use is

also reduced (or approximately equal) in five out of six scenarios for SV, and

in all six scenarios for DTP. Overall, results from the test scenarios confirm

those obtained on the training scenarios.

4.3.2 Effect of Sequence Length and Number on SV

The SV algorithm has two free parameters. Figure 4.5 shows the effects

of varying the number of sequences nE, and Figure 4.6 shows the effects of

varying the number of requests, nR, in each sequence. Figures 4.5a and 4.5b

show that waiting times are not very sensitive to the number of sequences

used. On the Corby system, a single sequence is sufficient to reduce waiting

101

intensity

m
ea

n
re

qu
es

t w
ai

tin
g

tim
e

(s
)

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

T1

(a)

T3

(c)

T5

(e)

0.2 0.4 0.6 0.8 1.0

T2

(b)

T4

(d)

T6

(f)

0.2 0.4 0.6 0.8 1.0

method

BWNN SD DTP SV SNN

Figure 4.3: Mean passenger waiting times for proactive EVR algorithms on
the test scenarios. Table 4.2 lists the parameters used. From intensity 0.7 to
0.9, which is the main region of interest, the SV algorithm gives lower mean
waiting times than the SD algorithm from the literature in five out of the six
test scenarios; DTP gives lower mean waiting times in all six scenarios.

102

intensity

m
ea

n
%

 m
ov

in
g

em
pt

y

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

T1

(a)

T3

(c)

T5

(e)

0.2 0.4 0.6 0.8 1.0

T2

(b)

T4

(d)

T6

(f)

0.2 0.4 0.6 0.8 1.0

method

BWNN SD DTP SV SNN

Figure 4.4: Empty vehicle use for proactive EVR algorithms on the test
scenarios. Table 4.2 lists the parameters used. From intensity 0.7 to 0.9,
the SV algorithm uses fewer empty vehicles than the SD heuristic from the
literature for five out of the six test scenarios; the DTP algorithm uses fewer
empty vehicles for all six test scenarios.

103

times well below the BWNN baseline. However, Figures 4.5c and 4.5d show

that using more sequences produces some further reductions in waiting time

and also significant reductions in empty vehicle travel. For example, on the

Grid system at intensity 0.4 with a single sequence, 65% of moving vehicles

are empty on average, but this falls to 45% when 50 sequences are used. This

is because a small ensemble is less likely to be representative of the actual

demand, and also because the actions recommended by a small ensemble are

more likely to change at each decision point. So, while a small ensemble

will sometimes make good recommendations that reduce passenger waiting

times, it is also likely to make bad recommendations that result in wasted

empty vehicle trips.

Figure 4.6 shows that waiting times decrease for all intensities as nR

increases. A sequence with more requests generates more occupied and empty

vehicle trips, which makes it more likely that the sequence will vote on what

to do with an idle vehicle, rather than just leaving it idle. This results in

more empty vehicle movement, but also lower waiting times. For example,

at intensity 0.8 on the Grid network, increasing nR from 100 to 200 increases

the fraction of moving vehicles that are empty from 36% to 40%, and it

decreases mean passenger waiting times from 46s to 18s.

4.4 Discussion

The results show that the SV and DTP algorithms substantially reduce pas-

senger waiting times by moving vehicles proactively. However, SV and DTP

are heuristics, and the benchmarks developed in Chapter 3 do not rule out

further improvements. This section describes several areas in which SV and

DTP could be improved.

SV tends to give lower mean waiting times than the other heuristics at

high intensities, but it sometimes performs poorly at low intensities. For

example, SV provides the lowest mean waiting time for intensities larger

than 0.55 in Figure 4.3e, but this is not the case at lower intensities. The

main reason for this is that the SNN heuristic prefers vehicles with later

arrival times (the second tie-breaking rule in Section 3.2.5), so it prefers to

104

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
5
0

2
5
0

3
5
0

Corby Network

m
e
a
n
 w

a
it
 t
im

e
 (

s
e
c
o
n
d
s
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
5
0

2
5
0

3
5
0

Grid Network

(b)

BWNN
SV 1/300
SV 10/300
SV 50/300
SNN

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2
0

3
0

4
0

5
0

6
0

7
0

8
0

intensity

m
e
a
n
 %

 m
o
v
in

g
 e

m
p
ty

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2
0

3
0

4
0

5
0

6
0

7
0

8
0

intensity

(d)

Figure 4.5: Effect of the number of sequences (nE) on mean passenger waiting
times (a, b) and the fraction of moving vehicles which are empty (c, d). Even
a single sequence (nE = 1) is sufficient to significantly reduce waiting times
below the BWNN baseline, but using more sequences reduces the amount of
empty vehicle travel required. Here nR = 300 requests per sequence. Each
point is averaged over 10 independent runs of 50000 simulated passengers
each.

105

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
5
0

2
5
0

3
5
0

Corby Network

m
e
a
n
 w

a
it
 t
im

e
 (

s
e
c
o
n
d
s
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5
0

1
5
0

2
5
0

3
5
0

Grid Network

(b)

BWNN
SV 50/100
SV 50/200
SV 50/300
SNN

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

intensity

m
e
a
n
 %

 m
o
v
in

g
 e

m
p
ty

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

intensity

(d)

Figure 4.6: Effect of sequence length (nR) on mean waiting times (a, b) and
the fraction of moving vehicles which are empty (c, d). Longer sequences
(with more requests) reduce passenger waiting times at the cost of modest
increases in empty vehicle running. Here nE = 50 sequences. Each point is
averaged over 10 independent runs of 50000 simulated passengers each.

106

extend the routes of non-idle vehicles rather than moving idle vehicles. When

the demand intensity is low, it can often use a small subset of the vehicles to

serve all of the requests in a given sequence, so it tends to leave too many idle

vehicles idle. The third voting rule in Section 4.1 mitigates this by counting

empty trips with non-idle vehicles if some idle vehicles remain unused, but

this is only a partial solution.

A more fundamental limitation of SV is that it uses a scenario analysis

approach to optimisation under uncertainty. This term refers any method

that generates and solves an ensemble of static (deterministic) problems (Kall

and Wallace, 1997), as SV does. It is well-known that this approach is not

sound in general; the reason is that the optimal action to take when there is

uncertainty may not be optimal in any static version of the problem. This

is because a static problem is solved with the benefit of hindsight, so it

is never optimal to, for example, delay decisions until more information is

available. The next chapter takes a different approach that is sound but so

far intractable for practical problems.

A practical illustration of the above issue in the context of the EVR

problem is that SV never uses empty vehicle sidings. An empty vehicle siding,

or car barn (Anderson, 1998), is an off-line buffer where idle vehicles can be

stored before they proceed to particular stations. For example, if there is a

siding immediately upstream of several stations that might need an empty

vehicle in the future, it could be best to send it to the siding first, and then

send it to one of the stations later, when more information is available about

requests at the stations themselves. SV never does this, because SNN never

sends an idle vehicle to a siding; it only sends a vehicle directly to the origin

station of a request, and there are no requests from sidings. (This is also true

of any optimal solution to the static EVR problem, due to the strict triangle

inequality (1.1) on the travel times.) The use of sidings may be increasingly

important for larger networks, which have longer empty vehicle travel times.

It is notable that DTP may provide some support for using empty vehicle

sidings. In particular, a siding could be modelled as a station with zero

demand; this would allow DTP to have a non-zero target parameter (θi)

for the siding, so some idle vehicles could be moved there proactively; the

107

effectiveness of this approach has not yet been evaluated, however. This

observation, and the fact that DTP tends to work better than SV at low

demand intensities, suggests that it may be beneficial to combine DTP and

SV into a hybrid heuristic; this is a topic for future research.

One potentially undesirable characteristic of DTP is that it does not

prioritise larger deficits over smaller deficits. For example, it may occur

that, at a particular decision point, there is a single surplus idle vehicle for

the whole network, and several stations with deficits of vehicles. In this

case, DTP moves the idle vehicle to the nearest station with any deficit,

even if there is another station that is slightly further away but has a much

larger deficit. A special case of this situation arises on the four-station star

network from Example 2.2, in which all of the hub-to-spoke distances are

the same, and DTP performs poorly in this case. There are several possible

ways of mitigating this problem by adjusting the objective function of the

transportation problem (4.1), but none of these have so far been evaluated.

Overall, the results show that SV and DTP are effective heuristics. They

usually provide lower waiting times than other algorithms in the literature,

albeit at the expense of more computation. In practice, the value of re-

ductions in the passenger waiting times achievable with a given fleet size (or

reductions in the fleet size needed to meet a given target for passenger waiting

times) will likely offset the extra cost of these computations. The heuristics

presented here may therefore be of considerable value to practitioners.

108

Chapter 5

Future Work and Conclusions

Section 5.1 presents preliminary work on a formal model of a PRT system

(under the assumptions in Section 1.2) in a Markov Decision Process (MDP)

framework (Puterman, 2005). This allows us to find empty vehicle redistri-

bution strategies that are provably optimal for small systems. It may also

allow us to apply standard techniques from the MDP literature to find good

(but not provably optimal) strategies for larger systems. Here we will take

some first steps in this direction by developing one such formal model and

using it to find optimal strategies on small systems. Finally, Section 5.2

concludes the thesis.

5.1 A Markov Decision Process Formulation

MDPs are a formalism for modelling discrete time control problems in which

the outcome is at least partially due to random chance. At each time step,

the process is in a state s, and the decision maker takes an action a, that is

valid in this state. The process then moves to a new state, s′, for the next

time step, with a given probability Pr(s, a, s′). Each state has an associated

reward, R(s), which the decision maker receives immediately upon entering

state s. The aim is to find a corresponding policy that the decision maker

can follow to choose which action to take in each state; in its simplest form,

a policy is just a table that lists the optimal action to take in each state. An

109

optimal policy is one that maximises the (discounted) sum of the rewards

that the decision maker receives over time.

Section 5.1.1 describes one way to define an MDP for a particular scenario

— that is, for a given trip time matrix, demand matrix and fleet size. In

particular, we will define the states, the actions that are valid in those states,

the transition probabilities that relate states and actions, and the structure

of the rewards. The rewards are defined so that maximum (discounted) total

reward corresponds to minimum (discounted) total passenger waiting time.

An optimal policy is thus an optimal empty vehicle redistribution strategy

for the corresponding scenario.

A wide range of standard techniques are available to find good policies.

For small MDPs, provably optimal policies can be obtained by dynamic pro-

gramming (Puterman, 2005), as described in Section 5.1.2. Section 5.1.3

presents the optimal policies obtained for some small systems in this way.

For larger systems, which generate larger MDPs on which dynamic program-

ming is computationally infeasible, algorithms such as approximate dynamic

programming (Bertsekas and Tsitsiklis, 1996; Powell, 2007), reinforcement

learning (Sutton and Barto, 1999) and receding horizon control can produce

high-quality policies. These approaches and other directions for future work

are discussed in Section 5.1.4.

5.1.1 An MDP Model

There are many possible ways to model a PRT system as an MDP. The

model used here is based on the delayed assignment model used in the LWPF

algorithm in Section 2.2.2. Possible refinements will be discussed later.

We define the system state to be the number of queued passenger requests

at each station, the assigned destination of each vehicle, and how long it will

be before each vehicle reaches its assigned destination. A vehicle that has

already arrived at its destination is said to be idle. The decision maker is

a central dispatch system that can send idle vehicles on empty trips. The

randomness in the system comes from the occupied vehicle trips, which occur

in response to passenger requests. In each time step, the system receives

110

zero or more passenger requests, each of which has an origin station and a

destination station. If there is an idle vehicle at the origin, it serves the

request by moving to the destination; otherwise, the request is added to the

queue at the origin, where it waits to be served by a vehicle.

The decision maker’s task is to move idle vehicles so as to minimise (dis-

counted) total passenger waiting time. So, the reward associated with each

state is chosen to be the negative sum of the queue lengths at all stations. If

a passenger is left waiting for several time steps, the accumulated negative

reward is the passenger’s waiting time. It is also possible to penalise empty

vehicle movements, but we will focus only on waiting times, for now.

Based on the notation from Section 1.2, let K be the fleet size, let S

be number of stations, let tij be the trip time from station i to station j in

whole time steps, and let dij be the demand from station i to station j in

requests per time step. We will sometimes write tij and dij as t(i, j) and

d(i, j), respectively, for readability, and we will define tij = 0 and dij = 0

when i = j. Let diσ denote the total demand out of station i,
∑

j dij.

The system state at time t is written as a vector

s = (q1, . . . , qS, d1, . . . , dK , r1, . . . , rK)

where qi is the number of queued requests at station i (qi ≥ 0), dk is the

destination station of vehicle k (1 ≤ dk ≤ S), and rk is the number of time

steps remaining until k reaches dk (0 ≤ rk ≤ maxi,j tij). When rk = 0, vehicle

k is idle at dk. For all valid states, the following also hold.

1. For each vehicle k, rk ≤ maxi t(i, dk).

2. If there is no demand from a station, the queue is empty

(diσ = 0 =⇒ qi = 0).

3. If there are idle vehicles at a station then the queue is empty

({k : dk = i and rk = 0} 6= ∅ =⇒ qi = 0).

We now turn to the description of all possible successor states reachable from

state s. Let

s′ = (q′1, . . . , q
′
S, d

′
1, . . . , d

′
K , r

′
1, . . . , r

′
K)

111

time t
state s

time t +1
state s'

action in state s (dk)ˆ requests served (Si)

requests received for [t, t+1)
(Ni)

Figure 5.1: Time discretisation for the MDP model. If the action taken at
time t is to move an idle vehicle from station i, it is not available for requests
received at station i in [t, t+ 1). All remaining idle vehicles at i, and vehicles
that will become idle at time t+ 1, are available to serve requests.

denote a possible successor state; its components will be defined in terms

of random variables, as described below; the transition process is also sum-

marised in Figure 5.1.

1. The effects of the dispatcher’s action are applied. An action for state

s is written as a vector of new destinations

a = (d̂1, . . . , d̂K)

that satisfies d̂k = dk if rk > 0, because only idle vehicles can be sent on

empty trips. If there are no idle vehicles in state s, then there is only

one possible action, which is to allow vehicles to continue toward their

assigned destinations; such a state represents a delay due to vehicle

travel time.

2. New passenger requests are received at each station during the next

time step. Let the random variable Ni denote the number of requests

received with origin station i in the interval [t, t+1). Here it is assumed

that Ni follows a Poisson distribution with rate parameter diσ.

3. Queued or newly received requests at each station are assigned to the

112

available vehicles. Define

Ai =
{
k : d̂k = i and dk = i and rk ≤ 1

}
as the set of vehicles that are available to serve requests from station i in

the current time step. The number of requests with origin i that can be

served in the current time step is Si = min {qi +Ni, |Ai|}, where |Ai| is
the number of vehicles in the set Ai. The number of queued (unserved)

requests left over in s′ is then q′i = qi + Ni − Si. Each served request

can have any destination (other than i). Let the random variable ∆il

be the destination station of the lth request to be served (1 ≤ l ≤ Si);

∆il takes value j with probability dij/diσ. Sort the vehicles in Ai into

ascending order so that k1 < · · · < kSi
< · · · < k|Ai|; for the first Si of

these, k1, . . . , kSi
, set d′kl = ∆il. For all other vehicles, set d′k = d̂k.

4. Finally, set

r′k =

rk − 1, rk > 1

t(dk, d
′
k), rk ≤ 1

to move vehicles closer to their destinations.

In principle, each state in this MDP has an infinite number of possible suc-

cessor states, because any number of requests could be received in the next

time step (each Ni is unbounded above, because it follows a Poisson distri-

bution). In practice, we make the state space finite by truncating each queue

length q′i to an arbitrary length, qmax, beyond which additional requests are

rejected.

The successor states s′ are generated by enumerating all possible values

of Ni that give queue lengths q′i ≤ qmax, and, for each of these values, enu-

merating all possible permutations of the Si destination variables ∆il. The

transition probability Pr(s, a, s′) for each such s′ is determined by the prob-

ability mass functions of the random variables Ni and ∆il. Let ni and δil

be the particular values of Ni and ∆il that yield the successor state s′. The

113

random variables are all mutually independent, so

Pr(s, a, s′) =
S∏
i=1

f(ni)

Si∏
l=1

d(i, δil)/diσ

where

f(ni) =

Pr(Ni = ni), q′i < qmax,

Pr(Ni ≥ ni), q′i = qmax.

5.1.2 Solution Methods

The model described in section 5.1.1 is a finite MDP, and small instances can

be solved exactly using standard techniques, such as value iteration (Puter-

man, 2005). The aim of value iteration is to assign every state s a value,

V (s), so that the Bellman optimality equations

V (s) = R(s) + γmax
a

∑
s′

Pr(s, a, s′)V (s′) (5.1)

are satisfied, where γ ∈ (0, 1) is a discount factor. That is, the value of

state s is the immediate reward, R(s), plus the discounted expected value of

its successor states, assuming that we choose the action that maximises this

quantity. Because the rewards are bounded (in [−qmaxS, 0]) and the state

and action spaces are finite, equations (5.1) are guaranteed to have a unique

solution, denoted V ∗(s) (Puterman, 2005). This solution is obtained by

initialising V (s) to R(s) and then iterating until the value function converges

to within a specified tolerance.

The optimal policy, a∗(s), is obtained by being greedy with respect to the

optimal value function; that is,

a∗(s) = arg max
a

∑
s′

Pr(s, a, s′)V ∗(s′)

is the best action to take in state s.

114

5.1.3 Results

The smallest system of interest is a two station ring with a single vehicle.

Let S = 2, K = 1,

T =

(
0 1

1 0

)
, D =

(
0 0.2

0.3 0

)
(5.2)

and qmax = 1. The states, rewards, optimal values and actions for the corre-

sponding MDP are shown in Table 5.1. In states s5–s12, the vehicle is moving

(r1 > 0), so only one action is possible: the vehicle must continue on to its

destination. States s1–s4 are more interesting, because there are two actions

available for each state. For example, in s1, the vehicle is idle at station 1

(d1 = 1, r1 = 0), and the allowed actions are to either keep it at station 1

(d̂1 = 1) or to move it to station 2 (d̂1 = 2). In this case, the optimal action

in state s1 is to keep the vehicle at station 1 (a∗(s1) = (1)).

When the demand matrix D is changed, the optimal policy also changes.

Figure 5.2 shows the optimal actions in states s1–s4 for demand

D =

(
0 d12

d21 0

)
(5.3)

as d12 and d21 each vary from 0 to 1 request per time step; this covers the

system’s capacity region, as derived in Example 2.1, and some of the space

beyond it. When there are no queued requests (q1 = 0 and q2 = 0), the

vehicle should (roughly speaking) either

1. go to station 1 (if not already there) and wait, when d12 � d21,

2. go to station 2 (if not already there) and wait, when d12 � d21, or

3. stay where it is, when d12 and d21 have similar magnitude or are both

large.

When there is a queued request at station 1 (q1 > 0 and q2 = 0), for example,

the vehicle should (roughly speaking) either

1. go to station 1 and serve the request, when d21 is small, or

115

q1 q2 d1 r1 R(s) V ∗(s) a∗(s)
s1 0 0 1 0 0 -50.81 (1)
s2 0 1 1 0 -1 -52.90 (2)
s3 0 0 2 0 0 -50.57 (2)
s4 1 0 2 0 -1 -52.88 (1)
s5 0 0 1 1 0 -50.81 (1)
s6 1 0 1 1 -1 -51.88 (1)
s7 0 1 1 1 -1 -53.26 (1)
s8 1 1 1 1 -2 -53.90 (1)
s9 0 0 2 1 0 -50.57 (2)
s10 1 0 2 1 -1 -53.17 (2)
s11 0 1 2 1 -1 -52.10 (2)
s12 1 1 2 1 -2 -53.88 (2)

Table 5.1: Solution to the problem (5.2) with discount factor γ = 0.99. The
MDP has twelve states, s1–s12. The optimal values V ∗(s) and the optimal
actions a∗(s) are computed with value iteration. For example, in s4, there
are one or more passengers waiting at station 1 (q1 = 1), the vehicle is idle
at station 2 (d1 = 2, r1 = 0), and the optimal action is to move the vehicle
to station 1 (a∗(s4) = (1)). Note that there is more demand from station 2
to station 1 than in the other direction; this is why the value function for s8
is more negative than that for s12, for example.

116

2. wait at station 2 until a request from 2 to 1 is received, otherwise.

The particular shapes of the boundaries that separate these actions depend

strongly on qmax, especially when the demand is heavy. Figure 5.3 shows

the optimal policies for qmax = 10. The true value of qmax is probably larger

(the queue length at which potential passengers give up and choose another

mode), but the state space grows rapidly as qmax, or the other parameters,

increases, as shown in Table 5.2. When qmax = 10, there are 264 states, as

compared to 12, when qmax = 1; as more stations and vehicles are added, or

as qmax is increased, the number of states quickly reaches the millions.

Figure 5.4 shows the optimal policies when a second vehicle is added,

which are roughly

1. send both vehicles to station 1 (go to 1), if they are not already there,

2. send both vehicles to station 2 (go to 2), if they are not already there,

3. leave both vehicles where they are (stay),

4. send the vehicles to opposite stations (balance), or

5. a mixture of ‘balance’ and either ‘go to 1’ or ‘go to 2,’ depending on

the particular locations of the vehicles, as described in Table 5.3.

5.1.4 Discussion

The MDP as defined here could be refined in several ways, including the

following.

1. Vehicles are interchangeable, but the current model does not exploit

this: each vehicle has its own ‘label’. The numbers of vehicles inbound

to or idle at each station, and their remaining trip times are important,

but knowing precisely which vehicles are where is not important. The

state space and transition mechanism could be reformulated to exploit

this.

117

D12

D
21

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

 : q1 0
 : q2 0

 : q1 1
 : q2 0

 : q1 0
 : q2 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 : q1 1
 : q2 1

go to 1
go to 2
stay

Figure 5.2: Optimal policy for a two station ring (t12 = t21 = 1) with one
vehicle and qmax = 1, as the demand matrix (5.3) is varied. For example,
when d12 = 0.8, d21 = 0.1 and both q1 and q2 are zero (bottom left), the
vehicle should go to station 1 (if it is not already there) and wait. If a
request is then received at station 2, so q1 = 0 and q2 = 1 (top left), the
vehicle should stay at 1, and leave the request at 2 waiting; this is because it
anticipates that a request from 1 to 2 will soon be received, so it can serve the
request at 1 on the way back. The policy when q1 = 1 and q2 = 0 (bottom
right) is the mirror image of the policy when q1 = 0 and q2 = 1 (top left),
because the network is symmetric. Note that when both q1 > 0 and q2 > 0
(empty space at top right), the system state is either s8 or s12 (Table 5.1), so
the vehicle is not idle, and there is only one valid action. The black rectangle
marks the system’s capacity region.

118

D12

D
21

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

 : (q1, q2) (0, 0)

 : (q1, q2) (0, 1)

0.0

0.2

0.4

0.6

0.8

1.0
 : (q1, q2) (1, 0)

0.0

0.2

0.4

0.6

0.8

1.0
 : (q1, q2) (0, 2) : (q1, q2) (2, 0)

 : (q1, q2) (0, 3)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 : (q1, q2) (3, 0)

go to 1
go to 2
stay

Figure 5.3: Optimal policy for a two station ring (t12 = t21 = 1) with one
vehicle and qmax = 10, as the demand matrix (5.3) is varied. Comparison
with Figure 5.2 shows that qmax affects the optimal policy significantly when
demand is high. It also contributes to the cusp in the boundary between
optimal actions when there are queued requests. For example, when q1 = 0,
q2 = 1 and d12 = 0.6, the vehicle should wait when 0.7 ≤ d21 ≤ 1.0, because it
is likely that the queue at station 2 will reach qmax and stay there, regardless
of whether the vehicle serves the currently waiting request or not. The black
rectangle marks the system’s capacity region.

119

K \ qmax 1 2 3 4 5 ... 10
1 12 24 40 60 84 264
2 38 68 106 152 206 596
3 126 204 298 408 534 1,404
4 434 644 886 1,160 1,466 3,476
5 1,542 2,124 2,770 3,480 4,254 9,084
6 5,618 7,268 9,046 10,952 12,986 25,076
7 20,886 25,644 30,658 35,928 41,454 72,924
8 78,914 92,804 107,206 122,120 137,546 222,356

(a)

K \ qmax 1 2 3 4 5
1 60 189 432 825 1,404
2 456 1,341 2,952 5,505 9,216
3 3,510 9,645 20,430 37,161 61,134
4 27,348 70,317 143,244 253,905 410,076
5 215,550 519,549 1,017,702 1,756,665 2,783,094

(b)

Table 5.2: State space size for (a) a two station ring with t12 = t21 = 1, and

(b) a three station ring (b) with T =

 0 1 2
2 0 1
1 2 0

. Here, K is the fleet

size and qmax is the artificial limit on the queue length at each station; it is
assumed that dij > 0 if i 6= j.

120

D12

D
21

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

 : (q1, q2) (0, 0)

 : (q1, q2) (0, 1)

0.0

0.5

1.0

1.5

2.0
 : (q1, q2) (1, 0)

0.0

0.5

1.0

1.5

2.0
 : (q1, q2) (0, 2) : (q1, q2) (2, 0)

 : (q1, q2) (0, 3)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0
 : (q1, q2) (3, 0)

go to 1
go to 2
stay
balance
balance or go to 1
balance or go to 2

Figure 5.4: Optimal policy for a two station ring with two vehicles (t12 =
t21 = 1, K = 2, qmax = 10) as the demand matrix (5.3) is varied. In this
case ‘go to 1’ means that both vehicles should go to station 1, if they are
not already there, and similarly for ‘go to 2.’ The ‘balance or go to 1’ and
‘balance or go to 2’ regions are described in more detail in Table 5.3. The
black rectangle marks the system’s capacity region.

121

d21 d1 d2 r1 r2 a∗(s) Comments
1 0.15 1 1 0 0 (1, 1) leave both vehicles at station 1
2 0.15 2 2 0 0 (1, 1) move both vehicles to station 1
3 0.15 1 2 1 0 (1, 1) move both vehicles to station 1
4 0.20 1 1 0 0 (1, 1) leave both vehicles at station 1
5 0.20 2 2 0 0 (1, 2) move one vehicle to station 1, ...
6 0.20 1 2 1 0 (1, 1) ... then move the other to station 1
7 0.25 1 1 0 0 (1, 1) leave both vehicles at station 1
8 0.25 2 2 0 0 (1, 2) move one vehicle to station 1, ...
9 0.25 1 2 1 0 (1, 2) ... and leave the other at station 2

Table 5.3: Selected states and optimal actions near the boundary between
the ‘go to 1’ and ‘balance or go to 1’ regions in Figure 5.4 for d12 = 0.5,
q1 = 0 and q2 = 0. For d21 . 0.15, the optimal policy is always to send both
vehicles to station 1 (go to 1). On the boundary, for d21 ≈ 0.2, the optimal
policy is to go to 1, except when both vehicles are idle at station 2. In this
case, there is a delay between sending the first vehicle and, if no requests are
received, sending the second vehicle. (The state on row 6 is the successor of
the state on row 5, if no requests are received.) Finally, when d21 & 0.25, the
optimal action is to balance the vehicles between the two stations, except
when both vehicles are idle at station 1. In this case, they should both be
left idle at station 1. These last two cases are interesting, because they are
examples of optimal policies that cannot be described by setting a target for
the number of vehicles to be idle at or inbound to each station.

122

2. The current state includes only the number of queued requests at each

station. This might be appropriate for a system in which passengers

select their destination in the vehicle. If there are destination selection

panels (see Section 1.1.2), then destinations will be known for at least

some of the queued requests. The state space could be expanded to

include the destinations of some or all waiting passengers (up to qmax).

This would permit a wider range of policies, and waiting times might

be reduced.

The rapid growth of the state space with qmax limits the applicability of exact

methods, because a large qmax is required in order to study the behaviour

of the system at moderate-to-high demand intensities, which are the most

interesting. A formulation that exploited vehicle interchangeability (point

1 above) might reduce the size of the state space and yield solutions for

somewhat larger systems.

Beyond this, approximate dynamic programming (ADP) methods may

be used (Bertsekas and Tsitsiklis, 1996; Powell, 2007). Whereas (exact) dy-

namic programming updates the value of every state in every iteration, ADP

methods update the values of states along a single sample path at a time.

The idea is to avoid spending time to refine the value estimates for states

(or state-action pairs) that are very far from optimal. It is also noteworthy

that ADP methods do not require a finite state space, and so do not require

a qmax parameter.

The MDP formalism may permit the development of practical EVR al-

gorithms with a more rigorous foundation than those in the Chapter 4.

Whereas the approach taken so far has been to solve approximations to the

actual problem, the MDP approach is to solve the actual problem approxi-

mately. The MDP approach has produced good results in related problem

domains, such as the universal elevator controller in Wesselowski and Cas-

sandras (2006), and it is a promising direction for future work on the EVR

problem.

123

5.2 Conclusions

This thesis has developed two successful new EVR algorithms and several

theoretical tools for evaluating them. Chapter 2 used a fluid limit to derive

a benchmark for maximum attainable throughput. Using this, it was shown

that BWNN, a simple nearest neighbour heuristic, achieves high through-

put in practice. However, BWNN also caused long passenger waiting times

when the demand was light, because it only moved idle vehicles reactively,

in response to requests that had already been received. Chapter 3 then de-

rived two benchmarks for waiting time, in order to quantify the reduction

in waiting time that might be achieved by moving idle vehicles proactively,

in anticipation of future requests. One of these benchmarks was based on

combining the fluid limit analysis with a queueing model, and the other was

based on approximately solving a static version of the EVR problem, in which

the details of future requests were assumed to be known.

Chapter 4 described and evaluated two new EVR algorithms, SV and

DTP, that moved idle vehicles proactively; the results showed that these al-

gorithms substantially reduced passenger waiting times below those obtained

by the reactive BWNN algorithm. SV and DTP also compared favourably

with other proactive EVR algorithms in the literature, and they may be

of significant value to practitioners. However, the benchmarks derived in

Chapters 2 and 3 do not rule out further improvements over the methods

developed here, particularly when the demand is heavy.

Finally, Section 5.1 presented early work on a Markov Decision Process

(MDP) formulation of the EVR problem. Provably optimal policies were

obtained for small systems, and this approach may also yield practical EVR

algorithms in the future.

A common theme was the dependence of the results on how ‘heavy’ the

demand was relative to what the system could theoretically serve. This

was formalised using the demand intensity (2.8). At intensities near zero,

there were many idle vehicles, and near-zero waiting times were obtained;

as intensity approached one, however, waiting times diverged as the demand

approached the system’s theoretical capacity. The EVR algorithm strongly

124

affected the shape of the waiting time curve at intensities between zero and

one. Proactive movement of empty vehicles flattened the curve at lower

intensities and increased the steepness of the asymptote at intensity one. In

other words, proactive EVR increased the range of demands for which the

system could provide low waiting times. This effect was stronger for systems

with larger fleet sizes.

The main focus was on passenger waiting times. In practice, there would

be costs associated with empty vehicle operation. However, the fact that

PRT vehicles would be guided by computers makes these costs considerably

lower than those for conventional taxis. Proactive movement resulted in a

modest increase in the amount of empty vehicle travel required, but it greatly

reduced passenger waiting times.

Several topics were left for future research, including:

1. The effect of line congestion was ignored. Additional empty vehicle

movement due to proactive EVR would contribute to line congestion;

this could significantly increase trip times on systems that operate near

their congested limit.

2. The demand matrix used to plan proactive movements was the same

demand matrix that was used to generate the requests in simulation.

In practice, there would be error in the estimated demand, which could

make it difficult or impossible to move vehicles proactively.

3. The demand matrix was assumed to be stationary. In practice, the

demand would be time-varying, and in general it could change rapidly

due to public events, for example.

4. The demand intensity may often exceed one during peak periods; that

is, the system could be required to operate outside of its capacity region

for a limited time. A proactive EVR algorithm should ideally be able

to prepare the system for these large transient demands.

5. The demand was assumed to be Poisson. A PRT station directly adja-

cent to a train station could experience a more bursty traffic pattern.

125

6. Vehicles were assumed to be interchangeable. This would not be the

case if, for example, vehicles used batteries that sometimes ran out of

charge.

Despite several simplifying assumptions, no model or solution for the

EVR problem was obtained that was both accurate and tractable. The fluid

limit model was tractable, but it did not prescribe a way of making decisions

at the level of individual vehicles. The M/G/s queueing model was shown

to be an accurate model of a PRT system with a single origin station, but

its mean performance measures could only be obtained by simulation. The

static EVR problem, in which the details of all requests were assumed to be

known in advance, was shown to be NP-hard. An accurate MDP model was

formulated, but the state and action spaces were found to be large enough to

make exact solution infeasible. However, two new algorithms were developed

and shown to perform well in practice, and several new and useful theoretical

results were derived.

126

References

2getthere (2011a). Masdar operations. Accessed 11 May, 2011. Available
from: http://www.2getthere.eu/?p=128.

2getthere (2011b). Personal rapid transit. Accessed 11 May, 2011.
Available from: http://www.2getthere.eu/?page_id=58.

Adan, I. and Resing, J. (2002). Queueing theory. Course Notes, Eindhoven
University of Technology. Available from:
http://www.win.tue.nl/~iadan/queueing.pdf.

Alon, G., Kroese, D., Raviv, T., and Rubinstein, R. (2005). Application of
the Cross-Entropy method to the buffer allocation problem in a
Simulation-Based environment. Annals of Operations Research,
134(1):137–151. Available from:
http://dx.doi.org/10.1007/s10479-005-5728-8.

Anderson, J. E. (1978). Transit systems theory. Lexington Books. Available
from: http://www.worldcat.org/isbn/9780669019025.

Anderson, J. E. (1996). Some lessons from the history of personal rapid
transit. Available from:
http://faculty.washington.edu/jbs/itrans/history.htm.

Anderson, J. E. (1998). Control of personal rapid transit systems. Journal
of Advanced Transportation, 32(1):57–74.

Anderson, J. E. (2003). Control of personal rapid transit systems.
Telektronikk, 99(1):108–116.

Anderson, J. E. (2005). The SkyWeb express personal rapid transit system.
Urban Transport Xi.

Anderson, J. E. (2007). Some history of PRT simulation programs.
Accessed 10 May, 2011. Available from:

127

http://www.2getthere.eu/?p=128
http://www.2getthere.eu/?page_id=58
http://www.win.tue.nl/~iadan/queueing.pdf
http://dx.doi.org/10.1007/s10479-005-5728-8
http://www.worldcat.org/isbn/9780669019025
http://faculty.washington.edu/jbs/itrans/history.htm

http://prtnz.com/publications-mainmenu-37/doc_details/

24-some-history-of-prt-simulation-programs.

Andréasson, I. (1994). Vehicle distribution in large personal rapid transit
systems. In Transportation Research Record: Journal of the
Transportation Research Board, volume 1451, pages 95–99, Washington,
D.C. Transportation Research Board of the National Academies.

Andréasson, I. (1998). Quasi-Optimum redistribution of empty PRT
vehicles. In Sproule, W. J., Neumann, E. S., and Lynch, S. W., editors,
Automated People Movers VI: Creative Access for Major Activity
Centers, pages 541–550, Reston, VA. American Society of Civil Engineers.

Andréasson, I. (2003). Reallocation of empty personal rapid transit vehicles
en route. Transportation Research Record, 1838:36–41.

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2003). Implementing
the Dantzig-Fulkerson-johnson algorithm for large traveling salesman
problems. Mathematical Programming, 97(1):91–153. Available from:
http://dx.doi.org/10.1007/s10107-003-0440-4.

Applegate, D., Bixby, R., Cook, W., and Chvátal, V. (1998). On the
solution of traveling salesman problems. Rheinische
Friedrich-Wilhelms-Universität Bonn. Available from:
http://www.worldcat.org/oclc/535371278.

Archer, A., Levin, A., and Williamson, D. P. (2008). A faster, better
approximation algorithm for the minimum latency problem. SIAM
Journal on Computing, 37(5):1472–1498. Available from:
http://link.aip.org/link/?SMJ/37/1472.

Becker, K. (1976). Cabintaxi: Technical level, market situation, and
targets. In Gary, D. A., Gary, M. J., Kornhauser, A. L., and Garrard,
W. L., editors, Personal Rapid Transit III. University of Minnesota,
Audio Visual Library Service.

Bektas, T. (2006). The multiple traveling salesman problem: an overview of
formulations and solution procedures. Omega, 34(3):209–219. Available
from: http://dx.doi.org/10.1016/j.omega.2004.10.004.

Bell, M. G. H. and Wong, K. I. (2005). A rolling horizon approach to the
optimal dispatching of taxis. In Mahmassani, H. S., editor,
Transportation and traffic theory : flow, dynamics and human interaction

128

http://prtnz.com/publications-mainmenu-37/doc_details/24-some-history-of-prt-simulation-programs
http://prtnz.com/publications-mainmenu-37/doc_details/24-some-history-of-prt-simulation-programs
http://dx.doi.org/10.1007/s10107-003-0440-4
http://www.worldcat.org/oclc/535371278
http://link.aip.org/link/?SMJ/37/1472
http://dx.doi.org/10.1016/j.omega.2004.10.004

: proceedings of the 16th International Symposium on Transportation and
Traffic Theory, pages 629–648, Amsterdam. Elsevier.

Bender, J. G. (1991). An overview of systems studies of automated highway
systems. Vehicular Technology, IEEE Transactions on, 40(1):82–99.
Available from: http://dx.doi.org/10.1109/25.69977.

Bent, R. W. and Van Hentenryck, P. (2004). Scenario-Based planning for
partially dynamic vehicle routing with stochastic customers. Operations
Research, 52(6):977–987. Available from:
http://dx.doi.org/10.2307/30036646.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007).
Static pickup and delivery problems: a classification scheme and survey.
TOP, 15(1):1–31. Available from:
http://dx.doi.org/10.1007/s11750-007-0009-0.

Berbeglia, G., Cordeau, J.-F., and Laporte, G. (2010). Dynamic pickup and
delivery problems. European Journal of Operational Research,
202(1):8–15. Available from:
http://dx.doi.org/10.1016/j.ejor.2009.04.024.

Bertsekas, D. P. and Tseng, P. (1988). Relaxation methods for minimum
cost ordinary and generalized network flow problems. Operations
Research, 36(1):93–114. Available from:
http://dx.doi.org/10.2307/171381.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming.
Athena Scientific. Available from:
http://www.worldcat.org/isbn/9781886529106.

Bertsimas, D. and Tsitsiklis, J. (1997). Introduction to Linear
Optimization. Athena Scientific. Available from:
http://portal.acm.org/citation.cfm?id=548834.

Bertsimas, D. J. and Levi, D. S. (1996). A new generation of vehicle
routing research: Robust algorithms, addressing uncertainty. Operations
Research, 44(2):286–304. Available from:
http://dx.doi.org/10.2307/171796.

Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P.,
and Sudan, M. (1994). The minimum latency problem. In Proceedings of
the twenty-sixth annual ACM symposium on Theory of computing, STOC

129

http://dx.doi.org/10.1109/25.69977
http://dx.doi.org/10.2307/30036646
http://dx.doi.org/10.1007/s11750-007-0009-0
http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.2307/171381
http://www.worldcat.org/isbn/9781886529106
http://portal.acm.org/citation.cfm?id=548834
http://dx.doi.org/10.2307/171796

’94, pages 163–171, New York, NY, USA. ACM. Available from:
http://dx.doi.org/10.1145/195058.195125.

Bly, P. H. and Teychenne, P. (2005). Three financial and Socio-Economic
assessments of a personal rapid transit system. In Proceedings of the
Tenth International Conference on Automated People Movers, pages 39+.
American Society of Civil Engineers. Available from:
http://link.aip.org/link/?ASC/174/39.

Boxma, O. J., Cohen, J. W., and Huffels, N. (1979). Approximations of the
mean waiting time in an M/G/s queueing system. Operations Research,
27(6). Available from: http://dx.doi.org/10.2307/172087.

Caudill, R. J., Kornhauser, A. L., and Wroble, J. R. (1979). Hierarchical
vehicle management concept for automated guideway transportation
systems. Vehicular Technology, IEEE Transactions on, 28(1):11–21.
Available from:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1622606.

Chakroborty, P. and Das, A. (2003). Principles of transportation
engineering. Prentice Hall of India. Available from:
http://www.worldcat.org/isbn/9788120320840.

Chekuri, C. and Pál, M. (2006). An o(logn) approximation ratio for the
asymmetric traveling salesman path problem. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 95–103. Springer. Available from:
http://dx.doi.org/10.1007/11830924_11.

Cordeau, J.-F., Laporte, G., Potvin, J.-Y., and Savelsbergh, M. W. P.
(2006). Transportation on demand. In Barnhart, C. and Laporte, G.,
editors, Transportation, Handbooks in operations research and
management science, v. 14, chapter 7. North Holland.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001).
Introduction to Algorithms. MIT Press, second edition. Available from:
http://www.worldcat.org/isbn/9780262032933.

Cottrell, W. D. (2005). Critical review of the personal rapid transit
literature. In Proceedings of the 10th International Conference on
Automated People Movers, volume 174, pages 40+. ASCE. Available
from: http://dx.doi.org/10.1061/40766(174)40.

130

http://dx.doi.org/10.1145/195058.195125
http://link.aip.org/link/?ASC/174/39
http://dx.doi.org/10.2307/172087
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1622606
http://www.worldcat.org/isbn/9788120320840
http://dx.doi.org/10.1007/11830924_11
http://www.worldcat.org/isbn/9780262032933
http://dx.doi.org/10.1061/40766(174)40

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a
Large-Scale Traveling-Salesman problem. Journal of the Operations
Research Society of America, 2(4):393–410. Available from:
http://dx.doi.org/10.2307/166695.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem.
Management Science, 6(1):80–91. Available from:
http://dx.doi.org/10.2307/2627477.

de Boer, P.-T., Kroese, D., Mannor, S., and Rubinstein, R. (2005). A
tutorial on the Cross-Entropy method. Annals of Operations Research,
134(1):19–67. Available from:
http://dx.doi.org/10.1007/s10479-005-5724-z.

Delle Site, P., Filippi, F., and Usami, D. (2005). Design of operations of
personal rapid transit systems. In Proceedings of the 10th Meeting of the
Euro Working Group on Transportation. Available from:
http://www.iasi.cnr.it/ewgt/16conferencePROC.html.

Dumas, Y., Desrosiers, J., Gelinas, E., and Solomon, M. M. (1995). An
optimal algorithm for the traveling salesman problem with time windows.
Operations Research, 43(2):367–371. Available from:
http://dx.doi.org/10.2307/171843.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery
problem with time windows. European Journal of Operational Research,
54(1):7–22. Available from:
http://dx.doi.org/10.1016/0377-2217(91)90319-Q.

Featherstone, C. T. (2005). Automatic Transport System and Vehicle
Control Design for Passenger Comfort and Safety. PhD thesis,
University of Bristol, Department of Aerospace Engineering.

Fichter, D. (1964). Individualized Automatic Transit and the City. B. H.
Sikes, 1430 East 60th Place, Chicago, Illinois 60637. Available from:
http://www.worldcat.org/oclc/4872209.

Fischetti, M., Laporte, G., and Martello, S. (1993). The delivery man
problem and cumulative matroids. Operations Research, 41(6):1055–1064.
Available from: http://dx.doi.org/10.2307/171600.

Ford, B. M., Roesler, W. J., and Waddell, M. C. (1972). Vehicle
management for PRT systems. In Anderson, J. E., editor, Personal

131

http://dx.doi.org/10.2307/166695
http://dx.doi.org/10.2307/2627477
http://dx.doi.org/10.1007/s10479-005-5724-z
http://www.iasi.cnr.it/ewgt/16conferencePROC.html
http://dx.doi.org/10.2307/171843
http://dx.doi.org/10.1016/0377-2217(91)90319-Q
http://www.worldcat.org/oclc/4872209
http://dx.doi.org/10.2307/171600

Rapid Transit, pages 411–434. University of Minnesota, Audio Visual
Library Services.

Friggstad, Z., Salavatipour, M. R., and Svitkina, Z. (2010). Asymmetric
traveling salesman path and directed latency problems. In Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 419–428, Philadelphia, PA, USA. Society
for Industrial and Applied Mathematics. Available from:
http://portal.acm.org/citation.cfm?id=1873636.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P.,
Booth, M., and Rossi, F. (2010). GNU Scientific Library Reference
Manual. Network Theory Ltd, 1.14 edition.

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The vehicle routing
problem latest advances and new challenges. Springer. Available from:
http://www.worldcat.org/isbn/9780387777788.

Gupta, V., Harchol-Balter, M., Dai, J., and Zwart, B. (2010). On the
inapproximability of M/G/k: whytwomoments of job size distribution
arenotenough. Queueing Systems, 64(1):5–48. Available from:
http://dx.doi.org/10.1007/s11134-009-9133-x.

Homerick, D. J. (2010). PRT-SIM: An Open-Source microsimulator for
personal rapid transit systems. Master’s thesis, University of California
Santa Cruz.

Horn, M. (2002a). Fleet scheduling and dispatching for demand-responsive
passenger services. Transportation Research Part C: Emerging
Technologies, 10(1):35–63. Available from:
http://dx.doi.org/10.1016/S0968-090X(01)00003-1.

Horn, M. (2002b). Multi-modal and demand-responsive passenger transport
systems: a modelling framework with embedded control systems.
Transportation Research Part A: Policy and Practice, 36(2):167–188.
Available from: http://dx.doi.org/10.1016/S0965-8564(00)00043-4.

Hvattum, L. M., Løkketangen, A., and Laporte, G. (2006). Solving a
dynamic and stochastic vehicle routing problem with a sample scenario
hedging heuristic. Transportation Science, 40(4):421–438. Available from:
http://dx.doi.org/10.1287/trsc.1060.0166.

132

http://portal.acm.org/citation.cfm?id=1873636
http://www.worldcat.org/isbn/9780387777788
http://dx.doi.org/10.1007/s11134-009-9133-x
http://dx.doi.org/10.1016/S0968-090X(01)00003-1
http://dx.doi.org/10.1016/S0965-8564(00)00043-4
http://dx.doi.org/10.1287/trsc.1060.0166

Irving, J. H., Bernstein, H., Olson, C. L., and Buyan, J. (1978).
Fundamentals of Personal Rapid Transit. Lexington Books, D.C. Heath
and Company.

Ishii, T., Iguchi, M., and Koshi, M. (1976). CVS: Computer-Controlled
vehicle system. In Gary, D. A., Gary, M. J., Kornhauser, A. L., and
Garrard, W. L., editors, Personal Rapid Transit III. University of
Minnesota, Audio Visual Library Services.

Johnson, R. E., Walter, H. T., and Wild, W. A. (1976). Analysis and
simulation of automated vehicle stations. In Gary, D. A., Girrard, W. L.,
and Kornhauser, A. L., editors, Personal Rapid Transit III, pages
269–281. University of Minnesota, Minneapolis.

Kall, P. and Wallace, S. W. (1997). Stochastic programming. Wiley.
Available from: http://www.worldcat.org/isbn/9780471951087.

Kaplan, H., Lewenstein, M., Shafrir, N., and Sviridenko, M. (2005).
Approximation algorithms for asymmetric TSP by decomposing directed
regular multigraphs. J. ACM, 52:602–626. Available from:
http://dx.doi.org/10.1145/1082036.1082041.

Laarhoven, P. J. M. and Aarts, E. H. L. (1987). Simulated annealing: theory
and applications. Kluwer Academic Publishers, Norwell, MA, USA.
Available from: http://portal.acm.org/citation.cfm?id=59580.

Latour, B. (1996). Aramis, or, The love of technology. Harvard University
Press. Available from:
http://www.worldcat.org/isbn/9780674043237.

Lee, D.-H., Wang, H., Cheu, R., and Teo, S. (2004). Taxi dispatch system
based on current demands and Real-Time traffic conditions.
Transportation Research Record: Journal of the Transportation Research
Board, 1882:193–200. Available from:
http://dx.doi.org/10.3141/1882-23.

Lees-Miller, J. D., Hammersley, J., and Davenport, N. (2009). Ride sharing
in personal rapid transit capacity planning. In Griebenow, R. R., editor,
Automated People Movers 2009, pages 321–332, Reston, VA. American
Society of Civil Engineers.

Lees-Miller, J. D., Hammersley, J. C., and Wilson, R. E. (2010).
Theoretical maximum capacity as benchmark for empty vehicle
redistribution in personal rapid transit. Transportation Research Record:

133

http://www.worldcat.org/isbn/9780471951087
http://dx.doi.org/10.1145/1082036.1082041
http://portal.acm.org/citation.cfm?id=59580
http://www.worldcat.org/isbn/9780674043237
http://dx.doi.org/10.3141/1882-23

Journal of the Transportation Research Board, 2146:76–83. Available
from: http://dx.doi.org/10.3141/2146-10.

Lees-Miller, J. D. and Wilson, R. E. (2011). Sampling for personal rapid
transit empty vehicle redistribution. Transportation Research Record:
Journal of the Transportation Research Board.

Lees-Miller, J. D. and Wilson, R. E. (2012). Proactive empty vehicle
redistribution for personal rapid transit and taxis. Transportation
Planning and Technology.

Levy, G. (1976). The french aramis system. In Gary, D. A., Gary, M. J.,
Kornhauser, A. L., and Garrard, W. L., editors, Personal Rapid Transit
III. University of Minnesota, Audio Visual Library Service.

Li, S. (2006). Multi-attribute taxi logistics optimization. Master’s thesis,
Massachusetts Institute of Technology. Available from:
http://dspace.mit.edu/handle/1721.1/35112.

Lowson, M. (2003). New approach to effective and sustainable urban
transport. Transportation Research Record, 1838:42–49.

Lowson, M. (2004). Idealised models for public transport systems.
International Journal of Transport Management, 2(3-4):135–147.
Available from: http://dx.doi.org/10.1016/j.ijtm.2005.05.001.

Lowson, M. V. (1999). Personal public transport. Proceedings of the
Institution of Civil Engineers-Transport, 135(3).

Mendez-Diaz, I., Zabala, P., and Lucena, A. (2008). A new formulation for
the traveling deliveryman problem. Discrete Applied Mathematics,
156(17):3223–3237. Available from:
http://dx.doi.org/10.1016/j.dam.2008.05.009.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer
programming formulation of traveling salesman problems. J. ACM,
7(4):326–329. Available from:
http://dx.doi.org/10.1145/321043.321046.

Miller, D. L. and Pekny, J. F. (1991). Exact solution of large asymmetric
traveling salesman problems. Science, 251(4995):754–761. Available
from: http://dx.doi.org/10.2307/2875169.

134

http://dx.doi.org/10.3141/2146-10
http://dspace.mit.edu/handle/1721.1/35112
http://dx.doi.org/10.1016/j.ijtm.2005.05.001
http://dx.doi.org/10.1016/j.dam.2008.05.009
http://dx.doi.org/10.1145/321043.321046
http://dx.doi.org/10.2307/2875169

Mitrovic-Minic, S., Krishnamurti, R., and Laporte, G. (2004).
Double-horizon based heuristics for the dynamic pickup and delivery
problem with time windows. Transportation Research Part B:
Methodological, 38(8):669–685. Available from:
http://dx.doi.org/10.1016/j.trb.2003.09.001.

Munson, A. V. (1972). Quasi-synchronous control of High-Capacity PRT
networks. In Anderson, J. E., Dais, J. L., Garrard, W. L., and
Kornhauser, A. L., editors, Personal Rapid Transit. University of
Minnesota, Audio Visual Library Services.

Nagarajan, V. and Ravi, R. (2008). The directed minimum latency
problem. In Goel, A., Jansen, K., Rolim, J. D. P., and Rubinfeld, R.,
editors, Approximation, Randomization and Combinatorial Optimization.
Algorithms and Techniques., volume 5171 of Lecture Notes in Computer
Science, pages 193–206. Springer. Available from: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.7480.

Oncan, T., Altinel, I., and Laporte, G. (2009). A comparative analysis of
several asymmetric traveling salesman problem formulations. Computers
& Operations Research, 36(3):637–654. Available from:
http://dx.doi.org/10.1016/j.cor.2007.11.008.

Powell, W. B. (1987). An operational planning model for the dynamic
vehicle allocation problem with uncertain demands. Transportation
Research Part B: Methodological, 21(3):217–232. Available from:
http://dx.doi.org/10.1016/0191-2615(87)90005-1.

Powell, W. B. (1996). A stochastic formulation of the dynamic assignment
problem, with an application to truckload motor carriers. Transportation
Science, 30(3):195–219. Available from:
http://dx.doi.org/10.1287/trsc.30.3.195.

Powell, W. B. (2007). Approximate dynamic programming : solving the
curses of dimensionality. Wiley-Interscience. Available from:
http://www.worldcat.org/isbn/9780470171554.

Psaraftis, H. N. (1995). Dynamic vehicle routing: Status and prospects.
Annals of Operations Research, 61(1):143–164. Available from:
http://dx.doi.org/10.1007/BF02098286.

Puterman, M. L. (2005). Markov decision processes : discrete stochastic
dynamic programming. Wiley-Interscience. Available from:
http://www.worldcat.org/isbn/9780471727828.

135

http://dx.doi.org/10.1016/j.trb.2003.09.001
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.7480
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.7480
http://dx.doi.org/10.1016/j.cor.2007.11.008
http://dx.doi.org/10.1016/0191-2615(87)90005-1
http://dx.doi.org/10.1287/trsc.30.3.195
http://www.worldcat.org/isbn/9780470171554
http://dx.doi.org/10.1007/BF02098286
http://www.worldcat.org/isbn/9780471727828

Rydell, E. W. F. (2001). The transportation Renaissance : the personal
transit solution. Distributed by Xlibris]. Available from:
http://www.worldcat.org/isbn/9781401043643.

Sarubbi, J. F. M. and Luna, H. P. L. (2007). A new ow formulation for the
minimum latency problem. In International Network Optimization
Conference. Available from: http://www.euro-online.org/enog/
inoc2007/Papers/author.31/paper/paper.31.pdf.

Schweizer, J., Danesi, A., Mantecchini, L., Traversi, E., and Caprara, A.
(2010). Towards a PRT capacity manual. In PRT@LHR Conference
Proceedings.

Schweizer, J. and Mantecchini, L. (2007). Performance analysis of large
scale PRT networks: theoretical capacity and micro-simulations. In
Automated People Movers 2007, pages 1–11.

Seow, K. T., Dang, N. H., and Lee, D.-H. (2010). A collaborative
multiagent Taxi-Dispatch system. IEEE Transactions on Automation
Science and Engineering, 7(3):607–616. Available from:
http://dx.doi.org/10.1109/TASE.2009.2028577.

Sirbu, M. A. (1974). Station configuration, network operating strategy and
station performance. In Anderson, J. E. and Romig, S., editors, Personal
Rapid Transit II, pages 461–478. University of Minnesota, Audio Visual
Library Services.

Strakosch, G. R. (1998). The Vertical Transportation Handbook. Wiley.

Sutton, R. S. and Barto, A. G. (1999). Reinforcement learning : an
introduction. MIT Press. Available from:
http://www.worldcat.org/isbn/9780262193986.

Swihart, M. R. and Papastavrou, J. D. (1999). A stochastic and dynamic
model for the single-vehicle pick-up and delivery problem. European
Journal of Operational Research, 114(3):447–464. Available from:
http://dx.doi.org/10.1016/S0377-2217(98)00260-4.

Szillat, M. T. (2001). A Low-level PRT Microsimulation. PhD thesis,
University of Bristol. Available from: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.1156.

Tijms, H. (2006). New and old results for the M/D/c queue. AEU -
International Journal of Electronics and Communications, 60(2):125–130.
Available from: http://dx.doi.org/10.1016/j.aeue.2005.11.008.

136

http://www.worldcat.org/isbn/9781401043643
http://www.euro-online.org/enog/inoc2007/Papers/author.31/paper/paper.31.pdf
http://www.euro-online.org/enog/inoc2007/Papers/author.31/paper/paper.31.pdf
http://dx.doi.org/10.1109/TASE.2009.2028577
http://www.worldcat.org/isbn/9780262193986
http://dx.doi.org/10.1016/S0377-2217(98)00260-4
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.1156
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.1156
http://dx.doi.org/10.1016/j.aeue.2005.11.008

Toth, P. and Vigo, D. (2002). The vehicle routing problem. SIAM
monographs on discrete mathematics and applications. Society for
Industrial and Applied Mathematics. Available from:
http://www.worldcat.org/isbn/9780898714982.

ULTra PRT (2008). ATS/CityMobil simulation installation guide and
tutorial. Accessed 5 May, 2011. Available from:
http://www.citymobil-project.eu/site/en/documenten.php.

ULTra PRT (2010). ULTra at london heathrow airport. Accessed July 31.
Available from: http:
//www.ultraprt.com/applications/existing-systems/heathrow/.

van Eijl, C. A. (1995). A polyhedral approach to the delivery man problem.
Technical Report COSOR 95-19, Eindhoven University of Technology.

Waddell, M. C., Williams, M. B., and Ford, B. M. (1973). Disposition of
empty vehicles in a personal rapid transportation system : interim report.
Johns Hopkins University, Applied Physics Laboratory. Available from:
http://www.worldcat.org/oclc/13294904.

Wang, H., Lee, D.-H., and Cheu, R. (2009). PDPTW based taxi dispatch
modeling for booking service. In Fifth International Conference on
Natural Computation, pages 242–247. IEEE. Available from:
http://dx.doi.org/10.1109/ICNC.2009.676.

Wesselowski, K. and Cassandras, C. G. (2006). The elevator dispatching
problem: Hybrid system modeling and receding horizon control. In
Cassandras, C., Giua, A., Seatzu, C., and Zaytoon, J., editors, Analysis
and Design of Hybrid Systems 2006: a Proceedings volume from the 2nd
IFAC Conference, pages 136–141. Elsevier.

Williams, H. P. (1999). Model Building in Mathematical Programming.
John Wiley & Sons Ltd, fourth edition.

Won, J.-M., Choe, H., and Karray, F. (2006). Optimal design of personal
rapid transit. In Intelligent Transportation Systems Conference, pages
1489–1494. Available from:
http://dx.doi.org/10.1109/ITSC.2006.1707434.

Xithalis, C. (2011). Hermes network simulator. Available from:
http://students.ceid.upatras.gr/~xithalis/simulation_en.html.

137

http://www.worldcat.org/isbn/9780898714982
http://www.citymobil-project.eu/site/en/documenten.php
http://www.ultraprt.com/applications/existing-systems/heathrow/
http://www.ultraprt.com/applications/existing-systems/heathrow/
http://www.worldcat.org/oclc/13294904
http://dx.doi.org/10.1109/ICNC.2009.676
http://dx.doi.org/10.1109/ITSC.2006.1707434
http://students.ceid.upatras.gr/~xithalis/simulation_en.html

Yang, H., Wong, S., and Wong, K. (2002). Demand-supply equilibrium of
taxi services in a network under competition and regulation.
Transportation Research Part B: Methodological, 36(9):799–819.
Available from: http://dx.doi.org/10.1016/S0191-2615(01)00031-5.

Yang, J., Jaillet, P., and Mahmassani, H. (2004). Real-Time multivehicle
truckload pickup and delivery problems. Transportation Science,
38(2):135–148. Available from:
http://dx.doi.org/10.1287/trsc.1030.0068.

York, H. L. (1974). The simulation of a PRT system operating under
Quasi-Synchronous control. In Anderson, J. E. and Romig, S., editors,
Personal Rapid Transit II. University of Minnesota, Audio Visual Library
Services.

138

http://dx.doi.org/10.1016/S0191-2615(01)00031-5
http://dx.doi.org/10.1287/trsc.1030.0068

	Introduction
	Personal Rapid Transit Background
	Networks
	Stations
	Vehicles
	Control Systems
	History
	Capacity

	Modelling Assumptions
	Thesis Outline

	A Benchmark for Throughput
	The Fluid Limit and the Capacity Region
	Reactive EVR Algorithms
	Bell and Wong Nearest Neighbours (BWNN)
	Longest-Waiting Passenger First (LWPF)
	Discussion

	Training and Testing Data
	Training Scenarios
	Testing Scenarios

	Evaluation of Throughput
	Results for BWNN and LWPF
	Results on the Test Scenarios
	The Effects of Line Congestion

	Benchmarks for Passenger Waiting Time
	An M/G/s Queueing Model
	Random Walk Model for Empty Vehicle Trips
	The Service Time Distribution
	The Queueing Model
	Results

	The Static EVR Problem
	The Vehicle Passenger Graph
	Arc Flow Formulation
	Related Problems
	Exact Solution as a Mixed Integer LP
	Approximate Solution: Static Nearest Neighbours (SNN)

	Discussion

	New Proactive EVR Algorithms
	Sampling and Voting (SV)
	Dynamic Transportation Problem (DTP)
	Setting Targets with Simulated Annealing
	Setting Targets with the Cross-Entropy Method

	Results
	Results on the Test Scenarios
	Effect of Sequence Length and Number on SV

	Discussion

	Future Work and Conclusions
	A Markov Decision Process Formulation
	An MDP Model
	Solution Methods
	Results
	Discussion

	Conclusions

	References

